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Abstract
Unmanned Aerial Vehicles (UAVs), often called drones, have gained progressive prevalence for their swift operational 
ability as well as their extensive applicability in diverse real-world situations. Of late, UAV usage in precision 
agriculture has attracted much interest from scientific community. This study will look at drone aid in precise 
farming. Big data has the ability to analyze enormous amounts of data. Due to this, it is one of the diverse crucial 
technologies of Information and Communication Technology (ICT) which had applied in precision agriculture 
for the abstraction of critical information as well as for assisting agricultural practitioners in the comprehension 
of the most feasible farming practices, and also for better decision-making. This work analyses communication 
protocols, as well as their application toward the challenge of commanding a drone fleet for protecting crops from 
infestations of parasites. For computer-vision tasks as well as data-intensive applications, the method of deep 
learning has shown much potential. Due to its vast potential, it can also be used in the field of agriculture. This 
research will employ several schemes to assess the efficacy of models includes Visual Geometry Group (VGG-
16), the Convolutional Neural Network (CNN) as well as the Fully-Convolutional Network (FCN) in plant disease 
detection. The methods of Artificial Immune Systems (AIS) can be used in order to adapt deep neural networks 
to the immediate situation. Simulated outcomes demonstrate that the proposed method is providing superior 
performance over various other technologically-advanced methods.

Keywords: Artificial Immune System (AIS), Big Data, Convolutional Neural Network (CNN), Deep Learning, Drones, 
Fully Convolutional Network (FCN), Pests, Precision Agriculture, Visual Geometry Group (VGG16).

Resumo
Os veículos aéreos não tripulados (UAVs), muitas vezes chamados de drones, ganharam prevalência progressiva 
por sua rápida capacidade operacional, bem como por sua ampla aplicabilidade em diversas situações do mundo 
real. Ultimamente, o uso de UAV na agricultura de precisão tem atraído muito interesse da comunidade científica. 
Este estudo analisará a ajuda de drones na agricultura de precisão. O big data tem a capacidade de analisar 
enormes quantidades de dados. Por isso é uma das diversas tecnologias cruciais de tecnologia da informação e 
comunicação (TIC) que foram aplicadas na agricultura de precisão para a abstração de informações críticas, bem 
como para auxiliar os praticantes agrícolas na compreensão das práticas agrícolas mais viáveis, e também para 
uma melhor tomada de decisão. Este trabalho analisa protocolos de comunicação, bem como sua aplicação no 
desafio de comandar uma frota de drones para proteção de lavouras contra infestações de parasitas. Para tarefas de 
visão computacional, bem como para aplicações com uso intensivo de dados, o método de aprendizagem profunda 
mostrou muito potencial. Devido ao seu vasto potencial, também pode ser utilizado na área agrícola. Esta pesquisa 
empregará vários esquemas para avaliar a eficácia de modelos, incluindo o Grupo de Geometria Visual (VGG-16), 
a Rede Neural Convolucional (CNN), bem como a Rede Totalmente Convolucional (FCN) na detecção de doenças 
de plantas. Os métodos de sistemas imunológicos artificiais (AIS) podem ser utilizados para adaptar redes neurais 
profundas à situação imediata. Os resultados simulados demonstram que o método proposto oferece desempenho 
superior em relação a vários outros métodos tecnologicamente avançados.

Palavras-chave: Sistema Imunológico Artificial (AIS), Big Data, Rede Neural Convolucional (CNN), Aprendizado 
Profundo, Drones, Rede Totalmente Convolucional (FCN), Pragas, Agricultura de Precisão, Grupo de Geometria 
Visual (VGG-16).

Identifying pests in precision agriculture using low-cost image 
data acquisition
Identificação de pragas na agricultura de precisão usando aquisição de dados de 
imagem de baixo custo

S. Hemalathaa*  and M. Sangeethab 
a Sri Shakthi Institute of Engineering and Technology, Department of Computer Science and Engineering, Coimbatore, India
b Coimbatore Institute of Technology, Department of Information Technology, Coimbatore, India

*e-mail: shemalathapraveen@gmail.com
Received: December 28, 2023 – Accepted: March 13, 2024

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9679-7880
https://orcid.org/0000-0003-2268-2076


Brazilian Journal of Biology, 2024, vol. 84, e2816712/13

Hemalatha, S. and Sangeetha, M.

The below dimensions are used for the characterization 
of the big data (Evstatiev and Gabrovska-Evstatieva, 
2021): Volume, Velocity, and Variety. Big data may have 
additional characterizations as Veracity and Valorization. 
While big data can be typically defined in terms of the 
aforementioned attributes as well as dimensions, all of 
them do not have to be mandatorily fulfilled as such a 
data analysis will be highly complex.

Human beings are always in competition with pests 
for accessing the available natural resources, and most 
significantly, the production of food. For all developing 
nations, plant pests, inclusive of weeds, pathogens as well 
as insects, continue to be one of the key constraints in food 
and agricultural crop production (Talebpour et al., 2015).

The occurrence of agricultural crop losses is often caused 
by either abiotic factors like nutrients, temperature, water, 
and irradiation or biotic factors like pathogens, pests, 
and weeds, commonly termed environmental actors. 
In general, these losses will result in the minimization 
of yield efficiency. Potential loss, as well as actual loss, 
will constitute the two distinct rates of loss (Patrício and 
Rieder, 2018). The potential loss will signify losses that 
happened without the utilization of any protection systems 
in comparison with yields having similar crop production 
intensity within a no-loss scenario. On the other hand, the 
actual loss will constitute losses that took place in spite 
of the utilization of practices of crop production. Along 
with the crop quantity losses, there are also qualitative 
crop losses that may have been caused due to reduction 
in the valuable ingredients as well as the market quality. 
Hence, healthy crop growth is only possible with early 
detection of diseases as well as pests. With an early 
incidence of pests as well as its swift development, crop 
vegetation will suffer an adverse effect, and also will have 
decreased growth. Meanwhile, pest incidence in the crop’s 
late-stage development will result in decreased yields as 
well as market values.

DL, an extension of standard ML, is deployed via the 
addition of into the model, and also data which can get 
transmitted with the use of numerous functions that permit 
the data’s hierarchical representation via the number 
of abstraction levels. Diverse fields of applications are 
increasingly employing deep learning due to its capacity for 
feature learning. The deep learning algorithm will utilize the 
composition of the lower-level features to yield the hierarchy 
of the higher-level features, and thereby, accomplish the 
automatic extraction of features from the raw dataset which 
has been provided (Ganatra and Patel, (2021).

With DL algorithms, it is possible to resolve complicated 
problems with more swiftness as well as precision since 
these algorithms will employ highly-complex model 
structures so as to perform tremendous parallelization. 
The DL will constitute convolutions, pooling layers, fully-
connected layers, activation functions, gates, memory cells, 
and so on. Each constituent’s utilization is dependent on 
the employed network architecture, namely, Recursive 
Neural Networks, the CNN, and the RNN. In DL, the most 
oft-used approach is the CNN due to it being accounted for 
as a deep, feed-forward Artificial Neural Network (ANN).

AlexNet, LeNet, ZFNet, GoogLeNet, etc. are some of the 
architectures which are frequently used by researchers. 

1. Introduction

Agriculture, a key income source for many nations, is 
able to fulfill humanity’s two most essential requisites: food 
as well as fiber. Over the earlier decades, agriculture had 
drastically changed due to technological developments such 
as the Green Movement. The focus of agricultural research 
is on a myriad of topics such as water depth, commodities, 
and management of livestock. These responsibilities can be 
performed by means of drones with the utilization of an 
extensive range of devices as well as sensors. During the past 
few decades, sector managers have been revolutionized by 
modern developments for handling a broad range of risks 
with the inclusion of abrupt variations in climate as well 
as pests, both of which has a detrimental impact on the 
crop amounts as well as the agricultural product quality. 
Since drones are constrained by their individual supplies 
of fuel as well as pesticide, they are able to achieve the 
elimination of pests by asking for aid from other drones. 
Attempts have been made to address these aforementioned 
concerns by the use of certain bio-inspired techniques of 
enrolment (Refaai et al., (2022).

Green Revolution had taken place from the 1960s till 
the 1980s. It led to increased production of food crops as 
well as food stability, especially in impoverished nations. 
Therefore, despite the doubling of the global population, 
and tripling of food production during the 1960s, the 
demands have already been fulfilled by agricultural 
production with an increase of 25% in the agricultural 
land. The prediction is that there will be an increase of 
over 75% in the consumption of agriculture as well as 
food goods by 2050.

Precision agriculture will involve the aggregation 
of historically generated as well as real-time data into 
unstructured and structured datasets. Since the majority 
of the precision agriculture-generated data is in the 
unstructured form, the present research trend involves 
this data’s utilization for the acquisition of knowledgeable 
information. Big data can enable an extensive variety of 
precision agricultural tasks for the extraction of knowledge 
and ideas from information in order to solve many unique 
in addition to major agricultural challenges & choices. 
Innovative technologies will give a structure for extracting 
insights from data in order to make earlier judgments on 
increasing productivity while preventing unnecessary 
expenses (Bendre et al., 2015).

With agricultural “big data,” it is essential to have huge 
investments in data storage as well as data processing 
infrastructures, some of which will have to operate in 
almost real-time (for example, forecasting of weather, 
monitoring of crop pests as well as animal diseases). 
As a result, the word “big data analysis” may refer to an 
innovative set of practices  that are being developed to 
enable farmers along with organizations to remove financial 
worth from massive volumes of diverse data through the 
facilitation of high-velocity capture, discovery, and/or 
analysis (Kamilaris et al., 2017).

With big data analysis, certain huge-scale agricultural 
corporations had accordingly tailored advice to the farmers 
and thus, had achieved an almost USD 20 billion increase 
in the annual global profits from agricultural crops.
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All the deep learning architectures will have their own 
strengths as well as weaknesses. All these architectures 
have pre-trained weights, that is, their networks have 
already undergone training with a certain dataset. As a 
result, these architectures can accurately classify certain 
problem domains. This work proposes the VGG-16, the 
8-layer CNN, the 12-layer CNN, and the 2- layer FCN as 
well as parameter optimization by means of immune 
system approaches. Section Two discusses the associated 
literary works. Section Three has a description of the many 
employed approaches. Section Four has explanations of 
the experimental outcomes, and Section Five has the 
work’s conclusions.

2. Literary works

Tantalaki et al. (2019) submitted an overview of the 
research which was focused on the practical use of data 
science approaches, particularly the ML approaches, in 
suitable farming structures. With the utilization of big data 
technologies, the data-intensive process of decision-making 
had an abundance of new opportunities. The authors 
examined literary works related to agricultural practices 
which used big data analysis for the resolution of numerous 
problems and thereby uncovered opportunities as well as 
up-and-coming areas of applicability. Nevertheless, the 
successful deployment of this technology in precision 
agriculture was hindered by the generated data’s high 
volume as well as complexity. Despite machine learning’s 
potential in handling agricultural big data, it had to undergo 
reinvention to fulfillment of its present difficulties.

Segalla et al. (2020) presented an efficient solution for 
the automation of Codling Moths’ detection. The system 
had taken pictures of the trapped insects within an orchard, 
had used a Deep Neural Network (DNN) algorithm for 
the image analysis, and also, in the event of a positive 
detection, had delivered alarms to the farmer. The system 
was wholly autonomous, and also had operated on its own 
for the overall crop season. There was the utilization of 
detection reports for optimization of the chemical treatment 
upon threat identification. An energy-neutral balance was 
accomplished through the design of a prototype with a 
small solar panel-powered embedded platform.

Albanese et al. (2021) submitted an embedded system 
that was improved with functionalities of ML for assurance 
of continuous recognition of pest infestation within the 
fruit orchards. The basis for the proposed solution was 
a low-power embedded sensing system as well as a 
Neural Accelerator which could take as well as process 
images within the oft-used pheromone-based traps. 
The platform’s various abilities were highlighted via the 
training as well as the implementation of three distinct 
machine learning algorithms. Additionally, with the 
integration of the functionalities of energy harvesting, the 
proposed approach ensured the battery life’s extension. 
The experimental outcomes proved automation of the 
pest infestation task for an unlimited time without any 
necessity for intervention from the farmer.

Lippi  et  al. (2021) had drawn inspiration from the 
requirements of PANTHEON, H2020 European project 

for accuracy agricultural of hazelnut orchards, and thus, 
had proposed a data-driven system for detection of 
pests. Primary-step pest finding was an essential step 
in the design of efficient strategies for crop defense in 
Precision Agriculture (PA) settings. Out of all possible 
pests, the authors had concentrated on trues due to 
hazelnut production being seriously jeopardized by these 
pests. For this purpose, the authors gathered a custom 
dataset within a realistic outdoor environment, and also 
trained a You Only Look Once (YOLO)-based CNN which 
had accomplished an average precision of ≈ 94.5% on a 
holdout dataset. Moreover, they performed an extensive 
assessment of the detector performance via analysis of the 
influence of data augmentation approaches as well as the 
depth information. Eventually, the authors implemented 
it on an NVIDIA Jetson Xavier. Upon its arrival at ≈ 50 fps, 
there was the facilitation of online processing on-board 
of any robotic stage.

A difficult challenge in a PA scenario was identifying 
bugs with protective color features within the complex 
field surroundings. To this end, Hu et al. (2022) had devised 
a technique of field pest identification on the basis of 
near-infrared imaging technology as well as YOLOv5. 
Initially, there was a selection of an appropriate infrared 
filter as well as ring light source for an image acquisition 
system’s construction as per the wavelength that had the 
greatest spectral reflectance difference between the pest’s 
(Pieris rapae) spectral curves and that of its host plant 
(cabbage), that were created by certain spectral attributes. 
Afterwards, there was a collection of the field pest images 
for the construction of a data set, which was then trained 
as well as tested by means of YOLOv5. The simulated 
outcomes had shown that 0.56 s was average required 
time for a single pest image’s detection, and 99.7% was 
reached by the mAP.

Melgar-García  et  al. (2022) had introduced a novel 
big data tri-clustering scheme that was on the basis of 
evolutionary algorithms. The innovative approach was 
capable of detecting 3d patterns based on the vegetation 
indicators of vine crops. Testing was done of diverse 
vegetation indices for identification of the crops’ distinct 
patterns. Reporting of the experimental outcomes was done 
with the utilization of a Portuguese vineyard crop which 
depicted four distinct areas with diverse moisture stress 
particularities which could cause changes in the vineyard’s 
management. With the performance of scalability studies, 
it was found that the proposed scheme was feasible for 
the management of a huge dataset.

Ullah  et  al. (2022) had put forward an innovative 
end-to-end DeepPestNet structure for pest identification 
as well as classification. This DeepPestNet design was 
made up of eleven learnable layers, with the inclusion of 
8 convolutional layers as well as three Fully-Connected (FC) 
layers. The authors employed image rotation schemes for 
increasing the dataset’s size as well as image augmentation 
schemes for testing DeepPestNet’s generalization ability. 
The proposed DeepPestNet framework’s assessment was 
performed with the well-known Deng’s crop dataset. 
This framework was employed for recognition as well 
as classification of the crop pests into 10-class pests, 
namely, LocustaMigratoria, EuproctisPseudoconspersa 
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Strand, ChrysochusChinensis, EmpoascaFlavescens, 
SpodopteraExigua, larva of laspeyresiapomonella, 
parasalepida, acridacinerea, larva of S. exigua as well 
as L. pomonella types of insect pests. The suggested 
DeepPestNet framework accomplished a 100% optimal 
accuracy. Furthermore, the authors conducted a comparison 
study of the suggested DeepPestNet framework against 
the standard pre-trained models of deep learning.

Zangina  et  al. (2021) took a proactive approach, 
introducing insecticide demand control using an active 
mass-spring suspension mechanism. In addition, with the 
usage of a controller that depends on model predictive 
control which employed the model of active demand 
management, this work effectively resolved issue of 
identification of right time, quantity as well as location 
for the application of pesticide in an agricultural field. 
Afterward, the proposal of a greedy algorithm was made 
for a resolution of the problem of vehicle routing after 
identification of the pesticide application’s optimal time 
as well as location. With due consideration of the models 
of pest risk predictions, the proposed approach mitigated 
the pest infestation risk. It was evident from the simulation 
outcomes that the proposed approach maximized crop 
protection against pests. In addition, when compared 
with the current approaches, the proposed approach’s 
performance analysis had shown its substantially lower 
complexity in computation as well as it is almost 78% 
quicker convergence toward the optimal solution.

3. Methodology

This section had discussions on the VGG-16, the 
CNN, the 2- layer FCN as well as the proposed PLANET-
parameter optimization that employed the immune 
system approaches.

3.1. VGG-16

The model of VGG-Net was devised by Simonyan et al., 
with the least amount convolution within the network. 
Despite its structural simplicity, the VGG-Net’s extensive 

application in the CNN models was due to its more in-
depth arrangement which was monitored by the layers of 
associations of double or triple convolution layers. On the 
other hand, the earlier models had the layers of sharing 
trailed by the convolution and so on. VGG provided a 
suitable feature representation for over a million photos 
(the ImageNet dataset) from 1,000 different groups, so 
as a result, the framework served as an effective feature 
extractor for potentially fresh pictures. The ImageNet 
dataset was capable to gather related attributes from 
photographs, including new images that did not previously 
exist or that were in completely different groups within the 
dataset. As a result, employing pre-trained models as an 
effective feature removal proved advantageous (Sahinbas 
and Catak, 2021).

Figure  1 RepresentsVGG-16’s design. The VGG-
16 design comprises three convolution filters with thirteen 
convolution layers each for feature extraction, with every 
convolution layer preceding a ReLU layer, and extreme 
pooling layers for sampling. It will include three distinct 
levels which are completely linked for classification 
purposes, two of them will operate as hidden layers, and 
third classification layer with 1,000 units will reflect the 
picture categories in the ImageNet database.

Even though the VGG-16 is a structural replica of a 
bigger filter, it will also conserve the merits of smaller-
sized filters. When compared to the earlier models, the 
VGGNet has better perform better with the utilization 
of less number of parameters. Moreover, it will employ 
two distinct ReLU layers rather than a single ReLU layer 
for two layers of convolution. Because of the decrease in 
spatial size of every layer’s input volumes (the convolution 
as well as partnering layers’ end result), there will be an 
increase in the volume depths due to the increasing filter 
numbers. It will show good performance for problems of 
object classification as well as edge detection.

It will fine-tune the model duty via the application 
of the VGG-16 network model. Suppose, it has a dataset 
with 𝑚 samples {(𝑥 (1), 𝑦 (1)),…,(𝑥 (𝑚), 𝑦 (𝑚))} for training 
purposes. The definition of network’s complete cost 
function will be according to the below Equation 1:

Figure 1. VGG16 Architecture (Sahinbas and Catak, 2021).
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For the above, 𝐾𝑤, 𝑏 ((𝑖)) will indicate neural network 
design, will indicate the connection weight among jth 
element of layer 1 as well as the ith element of layer 𝑙+1 
while b will indicate hidden layer neuron’s bias term. 
Equation 1 will be a regulation item on right-hand side 
that will avoid over-fitting, will significantly minimize 
the weight, and also will adjust the two terms’ relative 
importance before as well as after cost function, 𝜆. Upon 
resolution of the minimum values of Equation 1 as well 
as the minimum value of 𝐽(𝑊, 𝑏), the reverse conduction 
algorithm will adopt the accepted batch gradient descent 
optimization procedure, also will assess the partial 
derivative of 𝑊 as well as 𝑏.

3.2. Convolutional Neural Network (CNN)

Being a generic DL type, a CNN structure has more 
amount of hidden layers as well as neurons compared to 
either ANN or traditional Multi-Layer Perceptron (MLP). 
Moreover, CNN is in fact a type of supervised learning which 
is able to self-learn as well as to self-organize on the basis 
of the input data as well as its associated output labels. It is 
able to remove dependence on the hand-crafted features, 
and also is able to directly learning useful features from the 
data. Over the past decades, successful application of the 
CNNs has been done in diverse areas such as classification 
of images, localization of objects, and face recognition. 
Due to its high-efficiency, the CNNs are comprehensively 
employed for design of screening tools to assist clinicians 
in the field of medicine (Zhao et al., 2019a, b).

Upon comparison with the conventional schemes 
of machine learning, a CNN’s key difference is its direct 
ignorance of the requisite for the methods of feature 
extraction as well as selection. Thus, for majority of 
the physiological signals, CNN utilization is able to 
avoid valuable information loss as well as mitigate the 
computational burden associated with the best features’ 

extraction and selection during the training procedure 
for the pathological conditions’ accurate classification. 
Furthermore, a CNN will employ receptive fields as well as 
weight sharing for substantial reduction of the parameter 
numbers required by the neural networks for training 
purposes. The following appealing benefits became 
the main justifications for selecting a CNN for objective 
forecasting of fetal academia.

The CNN will incorporate the feature extractor as well 
as the classifier, and the Figure 2 will offer the illustration 
of this work’s 8-layer deep 2D CNN style which will contain 
input layer, the convolution-activation-normalization 
pooling layers, fully-connected-dropout layers as well 
as last classification layer. From input to output, various 
computational neural nodes build connections between one 
layer and another, as the input information is transferred 
layer by layer. The continuous convolution pooling design 
would decode, interpret, converge, and transfer the 
distinctive information of the original input onto hidden 
feature space. Following that, an entirely connected layer 
will do classification based on the collected characteristics. 
The spatial size description of each layer’s output feature 
maps is going to be indicated by the output shape, while 
the parameter will represent the overall amount of weights 
including the biases. Figure 2 has detailed descriptions of 
the CNN model’s employed layers.
•	 Image input layer (layer 1) - Upon utilization of a 

random crop approach for the image transformation, 
there will be the image dataset’s enrichment as well as 
enhancement of the model’s generalization capacity;

•	 Convolution layer (layer 2) - A feature map, whereby 
the hidden layers are linked together, can be used for the 
layer of convolution to retrieve pixel-level abstracted 
picture characteristics using convolution processes 
performed by one or more convolution kernels (that 
are stated to as filters). Every convolution kernel will 
use a sliding window technique to traverse the entire 
feature map, gathering & incorporating data from 
every little area to finish capturing the input image’s 
partial feature. The filter parameters utilized in every 
convolution layer of a CNN are often similar for a pair 
of factors: (i) sharing allows the picture content to be 
unaffected by location; (ii) this consistency considerably 

Figure 2. The CNN architecture (L = layer; FM = output feature map or number of neurons (width ×height ×depth)) (Zhao et al., 2019b).
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reduces parameters of optimization. A critical as well 
as appealing attribute of the CNN algorithm is its 
parameter sharing mechanism;

•	 Activation layer (layer 3) - The output of the convolution 
layer will be mapped using an Activation Function (AF) to 
produce feature mapping connection. Usually, the AF is 
employed in the middle of each layer of a neural network 
to perform the mapping modification of the input 
information as well as to provide the network’s non-
linear modeling capability. The element-by-element 
computations will not change the dimension of initial 
information during this method. In comparison  to 
alternative linear functions, our CNN algorithm 
picked the ReLU due to the following advantages: (i) 
faster convergence; and (ii) just a single threshold is 
essential for activation value acquisition, eliminating 
the requirement for complicated calculations;

•	 Normalization layer (layer 4)-The Batch Normalization 
(BN) layer will standardize  each layer’s input 
data throughout the neural network’s training 
technique, causing the gradient to grow in size and so 
avoiding the gradient disappearance issue while also 
significantly accelerating training speed;

•	 Pooling layer (layer 5) - The CNN structure will typically 
insert a pooling layer (also named a sub-sampling layer) 
on a periodic basis between the consecutive convolution 
layers. As image features which are feasible in a region 
may have equivalent applicability in yet another region, 
pooling layer will incorporate the features which are 
semantically similar. The operation of pooling will 
minimize the eigenvectors of the convolution output as 
well as the parameter numbers. Thus, the pooling has 
the ability to mitigate the model complexity as well as 
increase the computation speed whilst performing over-
fitting prevention. Akin to the convolution layer, feature 
mapping for every sub-region on input feature map will 
be carried out by the operation of pooling in steps of 
stride. The popular pooling procedures are max pooling, 
average pooling, and the randomized pooling. This CNN 
model will employ the former operation to evaluate the 
image area’s maximum value as the pooled result;

•	 Fully-connected layer (layer 6) -Location of the fully-
connected layer will be at network structure’s end. And 
it is a standard MLP network. This network layer’s final 
output will be the input images’ high-level features 
that are then statistically measured as per a classifier. 
Further, there is assessment of probability of the input 
image’s corresponding class label. It is assumed that 
the input image information has been abstracted into 
more information-intensive features after numerous 
rounds of convolution as well as pooling processing. 
Thus, the convolution layer as well as the pooling 
layer are taken in account as essential methods for the 
automatic image feature extraction. Upon completion 
of feature transformation, the task of final classification 
will be carried out by the fully-connected layer;

•	 Dropout layer (layer 7) -For the classification task, it 
will typically try to avoid the over-fitting from occurring. 
Over-fitting is said to have occurred when in spite of 
the trained model’s acquisition of high accuracy on the 
training data, its test data will have a relatively huge 

generalization error. That is to say, over-fitting is referred 
to as a particular situation where a defined model is 
capable of memorization of the training data’s random 
noise yet is unable to learn the training data’s general 
trend. Over-fitting can occur due to multiple factors, 
and in this work, listed below are some of available as 
well as proposed specified solutions:
a)	 Regularization: This robust method will introduce 

additional information so as to resolve an ill-posed 
problem and thus, prevent over-fitting. For this 
work, there is application of the L2 regularization 
for a regularizes addition to cost function;

b)	 Dropout technique: Typically, dropout layer will be 
organized after fully-connected layer. At the time 
of training procedure, various neural units will get 
temporarily dropped from network with a specific 
probability.

•	 Classification layer (layer 8) - Eventually, a softmax 
function is employed by the classification layer for 
separation of the output classes.

3.3. Two-Layer Fully Convolutional Networks (FCN)

For a convent, every layer output will be a h w d× × -sized 
three-dimensional array, in which h, as well as w will 
indicate the dimensions while d will indicate the feature 
or channel dimension. The image’s initial layer will 
have a h w×  pixel size as well as d number of channels. 
The higher-layers’ locations will be associated with the 
image’s locations they have path-connections with, also 
referred to as their receptive fields (Long et al., 2015).

On an intrinsic level, the convents are translation-
invariant. Its essential components (i.e., convolution, 
pooling as well as activation functions) will function 
on the local input regions, also are only dependent on 
relative spatial coordinates. Suppose that xij will denotes 
data vector at a location (i; j) in a certain layer, and yij will 
denote the same for the succeeding layer, these functions 
will use Equation 2 to evaluate the outputs, yij:

,({ }0 , )ij ks si i sj jy f x i j kδ δ δ δ+ += ≤ < 	 (2)

In this case, k represents kernel size, s represents stride 
or subsampling factor, and fks represents layer type as 
follows: a matrix multiplication for convolution or average 
pooling, a spatial max for max pooling, an activation 
function’s element-wise non-linearity, along with so on 
for other layer forms.

This functional structure will be preserved throughout 
composition, with kernel size and stride obeying the 
transformation rule Equation 3:

' ' ' ( 1) ', '( )ks k s k k s ssf g f g + −=  	 (3)

Upon computation of a general non-linear function by 
a general net, a net having layers only of this form will 
assess a non-linear filter that it will refer to as a deep filter 
or fully-convolutional network. Typically, an FCN is able 
to operate on any-sized inputs to yield corresponding 
(possibly resampled) spatial dimensions as its output.
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A real-valued loss function with an FCN is used to 
define a job. If the loss function is a sum of the spatial 
dimensions of the last layer, ( ; ) '( ; )ijij

l x l xθ θ=∑  its 

parameter gradient will be a sum over each of its spatial 
components’ parameter gradients. After evaluating the 
whole picture, the stochastic gradient descent on l shall 
be comparable to the stochastic gradient descent on l’, 
while all of the receptive fields of last layer will be treated 
as a mini-batch.

Upon significant overlap of these receptive fields, the 
feed-forward computation as well as the back-propagation 
will have more efficacy when they are evaluated layer-by-
layer over the complete image rather than patch-by-patch 
in an independent manner.

The classification nets are going to be converted into 
fully-convolutional nets, that will offer coarse output maps. 
However, these coarse outputs will have to be connected 
back to the pixels for pixel-wise predictions.

The generic recognition nets, inclusive of LeNet, AlexNet 
as well as its deeper successors, will supposedly use 
inputs of fixed sizes to yield outputs that are non-spatial 
in nature. The layers that are fully interconnected in these 
nets will have fixed dimensions & will not use geographic 
coordinates. Nonetheless, these fully interconnected 
layers may be visualized as convolutions with kernels that 
embrace their whole input areas (Wang et al., 2016). Thus, 
these nets will get cast into fully-convolutional networks 
which have the ability to use any-sized inputs to yield 
output maps that are spatial in nature.

Moreover, although the resultant maps share 
equivalence with the original net’s evaluation for 
certain input patches, there is high amortization of the 
evaluation over those patches’ overlapping regions. As an 
example, the AlexNet will need 1:2 ms (on a generic 
GPU) for inferring a 227 × 227 image’s classification 
scores. Contrastingly, for a 500 × 500 image, the fully-
convolutional net will only need 22 ms to yield an output 
grid of 10 × 10 grid, that is more than five times quicker 
than the naive approach1.

Due to these convolutionalized models’ spatial output 
maps, they are the obvious choice for dense difficulties 
includes semantic segmentation. With availability of 
ground truth at every output cell, forward pass as well as 
the backward pass are quite straightforward, and also will 
make full use of the convolution’s intrinsic computational 
efficacy (as well as aggressive optimization). For the 
AlexNet example, the corresponding backward time for 
a single image is 2:4 ms while for a fully-convolutional 
10 × 10 output map it is 37 ms, and thus will result in a 
speedup that is same as that of the forward pass.

When the classification nets are reinterpreted as being 
fully-convolutional, they can yield output maps for all 
sizes of inputs. However, subsampling is normally used 
to minimize their output dimensions. Subsampling is 
employed by the classification nets to maintain small filters 
as well as viable requisites for computation. By doing so, the 
output of these networks’ fully-convolutional version will 
be coarsened by reducing its input size by a factor equal 
to the pixel stride of output units’ corresponding fields.

3.4. Proposed PLANET - Parameter Optimization Using 
Immune System

Computer research’s key inspiration for problem-
solving is the biology as well as its diverse concepts. Of all 
the various natural concepts, emergence of the immune 
system has become a vital design aspect in the optimization 
algorithm development. A problem of optimization will 
seek the optimum element from a potential solution set. 
Since every scientific area will have diverse problems of 
optimization, there has been the development of various 
algorithms as well as techniques. Heuristics are the most 
feasible ones from among these algorithms, and are 
inclusive of diver’s algorithms like the genetic algorithms, 
the ant colony optimization, the firefly swarm optimization, 
the artificial bee colony, and so on.

The concept of population-based heuristics is employed 
by Decastro’s AIS. Computer researchers had developed 
algorithms that were influenced by the biological immune 
system’s defense mechanisms against diverse pathogen types. 
The resolution of various problems of optimization in areas 
of science technology as well as science was made possible 
with these algorithm types. Nevertheless, the biological 
immune system’s high-complexity has made its usage quite 
difficult in areas of technology. In addition, while there is 
on-going comprehensive research on the biological immune 
system, the adoption of the AIS has been done for only certain 
mechanisms that are influenced by the human immune 
structure, inclusive of clonal selection (Touami et al., 2018).

3.4.1. Natural Immune System

The biological immune system, with inclusion of 
human body system, will have a structure made up of 
cells, molecules as well as organs for providing the body 
defense against diseases. For the purpose of generating 
an immune response, the immune system will categorize 
body cells into self-cells, and the foreign cells into non-
self-cells (i.e., antigens). For defeating the non-self-cells, 
a feasible mechanism will activate the immune system 
response. Now, this mechanism’s definition will be offered 
by the antigen type since a specific antigen will signify a 
specific response as well as a specific procedure. In the 
event of similar antigens, the immune system will develop 
memory cells are developed by the immune system so as 
to yield a rapid response (De Castro and Von Zuben, 2002).

Figure  3 depicts the procedure of biological clonal 
selection as well as the steps taken for defending the 
body, beginning with antigen detection till its elimination.

Clonal selection is one among the most critical defense 
mechanisms against the non-self-cells. For clonal selection, 
the immune response will describe the procedure of how 
an immune system will offer stimulus against a particular 
antigen through proliferation of a specified cell type which 
is the only one capable of recognizing that antigen.

Upon an antigen’s entry into the body, the immune 
response will be to enable the B-cells’ antibody secretion 
capability. Later, the T-cells will signal the B-cells to 
proliferate as well as to mature into the plasma cells, i.e., 
cells which will secrete the terminal antibodies. Since the 
B-cells’ proliferation will be in accordance with the level 
of affinity, a higher affinity will signify the generation of 
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more number of clones, and in turn, affinity maturation 
will be the term used to describe this overall procedure.

Below are the steps of the procedure of clonal selection:
a.	 The cloned cells will pass through a procedure of mutation;
b.	 There will be elimination of the self-reactive receptor;
c.	 There will be proliferation of mature cells which are 

capable of antigen detection.

3.4.2. Artificial Immune System (AIS)

The approach known as AIS was created by drawing 
inspiration from the biological immune system. Its search 
strategy ought to be similar to the natural immune system 
because of the connection with the fitness function and 
affinity maturation in the natural system.

Size of pooling, size of filter, rate of learning, and number 
of filters are few examples of the AIS-optimized CNN 
parameters. Random antibodies initialization will involve 
these CNN parameters being initialized in a random manner.
1.	 Initialization: There will be generation of N, a random 

population within the search space just like the procedure 
in other heuristic algorithms. Due consideration will be 
given to this population as antibodies;

2.	 Clonal proliferation: The antibodies will clone 
(proliferate) as per their fitness (affinity) in this step;

3.	 Maturation: The technique of maturation will be akin to 
the mutation procedure with a P mutation probability. 
Equation 4 will be applied with this mutation as below:

max min
( ). (0,1)id id d dx x k x x N= + − 	 (4)

For the above, k will indicate the scale factor, 
N (0, 1) will indicate the standard distribution,

idx  will indicate antibody i’s d-dimension while 

max min
( ). (0,1)id id d dx x k x x N= + − will indicate variable  

i’s max bound, and 
max min

( ). (0,1)id id d dx x k x x N= + −  will 
indicate variable i’s min bound.
4.	 Evaluation: This step will calculate the affinity values 

so as to assess every antibody’s fitness function;
5.	 Aging operator: It will remove individuals lost more. 

Thus, Aging operator will result in the initial population’s 
upgrade;

6.	 Selection procedure: It will be employed to pick N 
individual to the subsequent generation;
Figure 4 Depicts the flowchart of proposed PLANET-

parameter optimization which employs AIS.

4. Results and discussion

In this unit, VGG 16, CNN 8 layer - 2 layers FCN, CNN 
12 layer - 2 layer FCN and proposed PLANET - parameter 

Figure 3. The biological clonal selection mechanism and its steps 
in order to defend the body, starting by detecting of the antigen 
until removing it (De Castro and Von Zuben, 2002).

Figure 4. Flowchart for Proposed PLANET-Parameter optimization 
using AIS.
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optimization using immune system methods are used. 
The accuracy, sensitivity, specificity, negative predictive 
value, f measure, and misclassification rate as shown in 
Table 1 to Table 6 and Figure 5 to Figure 10.

From Figure 5, it can be observed that the proposed 
PLANET - parameter optimization using immune system 
has higher accuracy by 6.46% for VGG16, by 3.15% for CNN 
8 layer - 2 layer FCN and by 1.91% for CNN 12 layer - 2 layer 
FCN respectively.

From Table 2 and Figure 6 It is clear that the projected 
PLANET- parameter optimization using immune system 
has higher average sensitivity by 6.22% for VGG16, by 
3.14% for CNN 8 layer - 2 layer FCN and by 1.98% for CNN 
12 layer - 2 layer FCN respectively.

From Table 3 and Figure 7 It is clear that the projected 
PLANET - parameter optimization using immune system 
has higher average specificity by 1.16% for VGG16, by 

0.56% for CNN 8 layer - 2 layer FCN and by 0.34% for CNN 
12 layer - 2 layer FCN respectively.

From Table 4 and Figure 8, it can be observed that the 
proposed PLANET - parameter optimization using immune 
system has higher average negative predictive value by 
1.18% for VGG16, by 0.57% for CNN 8 layer - 2 layer FCN 
and by 0.34% for CNN 12 layer - 2 layer FCN respectively.

From Table 5 and Figure 9, it can be observed that the 
proposed PLANET - parameter optimization using immune 
system has higher average f measure by 6.64% for VGG16, 
by 3.25% for CNN 8 layer - 2 layer FCN and by 2.01% for 
CNN 12 layer - 2 layer FCN respectively.

From Table 6 and Figure 10, It is clear that the projected 
PLANET - parameter optimization using the immune system 
has a lower misclassification rate by 60.7% for VGG16, by 
35.48% for CNN 8 layer - 2 layer FCN and, by 23.33% for 
CNN 12 layer - 2 layer FCN respectively.

Table 2. Sensitivity for Proposed PLANET-Parameter Optimization Using Immune System.

Samples VGG 16
CNN 8 layer - 2 

layer FCN
CNN 12 layer - 2 

layer FCN

PLANET - Parameter 
optimization using 

Immune System

Potato - Early Blight 0.8467 0.8633 0.875 0.9033

Potato - Late Blight 0.9094 0.9247 0.9353 0.9482

Potato - Healthy 0.8162 0.8962 0.9146 0.9308

Maize- Cercospora_leaf_spot 0.8368 0.892 0.9034 0.9241

Maize- Common Rust 0.9116 0.9145 0.9232 0.9377

Maize - Northern Leaf Blight 0.8907 0.9072 0.9134 0.9258

Maize - Healthy 0.9175 0.9228 0.9298 0.9526

Table 3. Specificity for Proposed PLANET-Parameter Optimization Using Immune System.

Samples VGG 16
CNN 8 layer - 2 

layer FCN
CNN 12 layer - 2 

layer FCN

Proposed 
PLANET - Parameter 
optimization using 

Immune System

Potato - Early Blight 0.9739 0.9807 0.9838 0.9872

Potato - Late Blight 0.9692 0.9751 0.978 0.9829

Potato - Healthy 0.98 0.9815 0.9828 0.986

Maize-Cercospora_leaf_spot 0.9792 0.9849 0.9877 0.9907

Maize- Common Rust 0.9781 0.985 0.9866 0.989

Maize - Northern Leaf Blight 0.9788 0.9863 0.9873 0.9909

Maize - Healthy 0.9771 0.9841 0.9867 0.9899

Table 1. Accuracy for Proposed PLANET-Parameter Optimization Using Immune System.

Techniques Accuracy

VGG 16 0.8746

CNN 8 layer - 2 layer FCN 0.9041

CNN 12 layer - 2 layer FCN 0.9153

Proposed PLANET - Parameter optimization using Immune System 0.933
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Table 4. Negative Predictive Value for Proposed PLANET-Parameter Optimization Using Immune System.

Samples VGG 16
CNN 8 layer - 2 

layer FCN
CNN 12 layer - 2 

layer FCN

Proposed PLANET 
- Parameter 

optimization using 
Immune System

Potato - Early Blight 0.9742 0.9777 0.9798 0.9846

Potato - Late Blight 0.9766 0.9812 0.984 0.9874

Potato - Healthy 0.95 0.9716 0.9768 0.9815

Maize- Cercospora_leaf_spot 0.9808 0.9876 0.989 0.9915

Common Rust 0.9821 0.9834 0.9852 0.9882

Northern Leaf Blight 0.9853 0.9879 0.9889 0.9906

Maize - Healthy 0.9866 0.9879 0.9891 0.9928

Table 5. Measure for Proposed PLANET-Parameter Optimization Using Immune System.

Samples VGG 16
CNN 8 layer - 2 layer 

FCN
CNN 12 layer - 2 

layer FCN

PLANET - Parameter 
optimization using 

Immune System

Potato - Early Blight 0.846 0.8713 0.8861 0.9109

Potato - Late Blight 0.8962 0.9134 0.9239 0.9394

Potato – Healthy 0.8648 0.913 0.9251 0.9389

Maize- Cercospora_leaf_spot 0.8311 0.8818 0.8983 0.9209

Maize- Common Rust 0.9025 0.9185 0.9265 0.9397

Maize - Northern Leaf Blight 0.8692 0.9016 0.9078 0.9267

Maize – Healthy 0.891 0.9116 0.9225 0.9435

Table 6. Misclassification Rate for PLANET-Parameter Optimization Using Immune System.

Techniques Misclassification Rate

VGG 16 0.1254

CNN 8 layer - 2 layer FCN 0.0959

CNN 12 layer - 2 layer FCN 0.0847

PLANET - Parameter optimization using Immune System 0.067

Figure 5. Accuracy for Proposed PLANET-Parameter Optimization Using Immune System.
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Figure 6. Sensitivity for Proposed PLANET-Parameter Optimization Using Im.

Figure 7. Specificity for Proposed PLANET-Parameter Optimization Using Immune System.

Figure 8. Negative Predictive Value for Proposed PLANET-Parameter Optimization Using Immune System.
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5. Conclusion

This work has conducted a survey for analyzing the 
impact of deep learning’s application in the agricultural 
field. Being robust models of visualization, CNNs can 
offer feature hierarchies. Hence, improvements on the 
prior best results can be offered by the convolutional 
networks themselves through their training which is 
from end-to-end, then pixels-to-pixels. The prime focus 
was on the construction of an FCN which will employ 
an arbitrarily-sized input to yield an output having a 
relative size with inference as well as learning which is 
highly effective. As an evolutionary algorithm, the AIS’s 
inspiration is based on how the human body is defended 
from pathogens by the biological immune system. With 
the AIS, the objective function’s maximization handled 
to the enhancement of the optimized CNN parameter. 
It is demonstrated from the simulated outcomes that the 
proposed PLANET-parameter optimization with immune 
system usage have high accuracies by 6.46% as that of 
VGG-16, by 3.15% as that of the CNN 8 layer - 2 layer FCN, 
and by 1.91% for the CNN 12 layer - 2 layer FCN.
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