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1. Introduction

The fertility of sows is affected by many factors, including breed, weight, nutrition, and exposure to 
boars (Li et al., 2018). Chinese indigenous pig breeds are characterized by early sexual maturity and 
high fecundity. For example, Meishan sows, which are an excellent native breed in China, are known for 
their high reproductive performance (Li et al., 2020). Meishan gilts enter puberty at approximately four 
months of age, while European breed gilts typically reach puberty between 200 and 220 days of age 
(Evans and O’Doherty, 2001). Diannan small-ear pigs also possess the aforementioned characteristics. 
They grow in the southern region of Yunnan Province, with a subtropical climate, and have strong 
adaptability to environmental changes (Wu et al., 2020a). 

The reproductive performance of sows affects pig production efficiency, and estrus is a key factor 
affecting the reproductive performance of sows. In the modern swine industry, sows typically enter 
estrus between three and five days post-weaning, with no more than 90% returning to estrus by 
day 7 post-weaning (Poleze et al., 2006). To make sows return to estrus as soon as possible, hormone 
induction is usually used. The use of hormones to induce estrus in sows has a long history (Kilgour and 
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Choquenot, 1994). The follicular development cycle of gilts can be regulated with hormones (De Rensis 
and Kirkwood, 2016). Studies have shown that the dose of estradiol benzoate is positively correlated 
with the duration of estrus (Dial et al., 1983). 

The gut microbiota is influenced by the physiological state and hormones of the animals. Gut microbes 
play a role in lipid disorders caused by estrogen deficiency (Guo et al., 2023). In our previous study, 
the intestinal microbial composition and microbial metabolism of Diannan small-ear sows were 
found to be significantly different between diestrus and metestrus (Guan et al., 2022). Lactobacillus and 
S24-7 were abundant in the feces of sows that returned to estrus normally, while Streptococcus luteciae 
was more abundant in sows that did not return to estrus normally (Zhang et al., 2021). Prevotella and 
Treponema are abundant in the intestines of sows in normal estrus, while Lachnospiraceae is more 
abundant in sows that do not show puberty (Wang et al., 2021). Changes in intestinal bacteria may lead 
to retinol metabolism disorders, leading to estrus failure (Wang et al., 2021).

Recently, there have been few studies on the gut microbiome of hormone-induced estrus in sows. 
Therefore, 16S rRNA sequencing technology was used to analyze the fecal microbiota of Diannan 
small-ear sows during induced estrus and spontaneous estrus to explore the microbiome differences 
between the two groups.

2. Material and Methods

2.1. Ethics statement

The Diannan small-ear sows were raised in Kunming, Yunnan, China (25°03' N, 102°72' E, 1.89 km). 
Research on animals was conducted according to the institutional committee on animal use (case 
number: 20210513). Animals were maintained and processed in accordance with the institutional 
guidelines for the care and use of animals.

2.2. Experimental animals and fecal collection

Twelve Diannan small-ear sows were used in this study. They were raised on a corn-soybean formula 
diet with free access to water. Dietary composition is detailed in Table 1. Sows were fed twice a day. 
All experimental sows were in parity 2. After the piglets were weaned on day 21, fecal samples were 
collected from the anuses of six spontaneous estrus sows (DC group) 3-4 d after weaning and placed 
into 5-mL sterile tubes. On the day of weaning, 12 sows were given a single dose injection of 2 mL 
of a mixture containing estradiol benzoate, progesterone, and testosterone propionate (Tristerone, 
Shanghai Full Woo Biotechnology Co., Ltd.). Among these induced-estrus sows, fecal samples were 
collected from six sows that came into estrus 3-4 d after hormone injection (DB group). We observed 

Table 1 - Dietary compositions
Ingredient Content (%) Dietary nutrition level Value

Corn 65.16 Digestive energy (MJ/kg) 13.96
Soybean meal 15.76 Crude protein (%) 17.08
Wheat bran 10.52 Crude fiber (%) 3.20
Fish meal 4.20 Ca (%) 1.06
Ca(HCO3)2 2.10 P (%) 0.47
Soybean oil 1.05
Salt 0.16
Premix1 1.05
Total 100.00
1 Premix provided the following per kg of diet: vitamin A, 10,000 IU; vitamin D, 3240 IU; vitamin E, 10 IU; vitamin K, 0.6 mg; vitamin B1, 1.0 mg; 

vitamin B2, 3.8 mg; vitamin B6, 1.0 mg; vitamin B12, 10.01 mg; nicotinic acid, 28.0 mg; biotin, 0.08 mg; folic acid, 0.2 mg; Cu, 4.81 mg; I, 0.14 mg; 
Fe, 83.98 mg; Mn, 3.02 mg; Se, 0.24 mg; Zn, 84.07 mg.
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the sows in estrus/non-estrus every day at 08:00 h and 16:00 h. If we observed that the sow’s vulva 
was red, swollen, and with increased secretions, we used a railing to separate the boar and the 
sow, and had one person press the back of the sow. When the sow remained in locked stance, it was 
considered to be in estrus. The boars and sows in this experiment were housed in separate buildings. 
All samples were immediately frozen in liquid nitrogen and stored at −80 °C until use.

2.3. 16S rRNA gene sequencing 

The CTAB/SDS method was used to extract total fecal genomic DNA. The concentration and integrity of 
DNA samples were determined using a Nanodrop-1000 (Thermo Fisher Scientific, United States) and 
1% agarose gel electrophoresis. The specific primers 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3’) were used to amplify the V3-V4 hypervariable region of the 16S 
rRNA gene. All PCR reactions were carried out in 30-µL reactions with 15 µL of Phusion High-Fidelity 
PCR Master Mix (New England Biolabs, United Kingdom), 0.2 µM of forward and reverse primers, and 
about 10 ng template DNA. Thermal cycling consisted of initial denaturation at 98 ℃ for 1 min, followed 
by 30 cycles of denaturation at 98 ℃ for 10 s, annealing at 50 ℃ for 30 s, and elongation at 72 ℃ for 
30 s; finally, 72 ℃ for 5 min. The same volume of 1× loading buffer (contained SYB green) was mixed 
with PCR products and the electrophoresis was operated on 2% agarose gel for detection. The mixture 
of PCR products was purified using the GeneJETTM Gel Extraction Kit (Thermo Fisher Scientific, United 
States). After purification, the PCR products were used for library construction. Sequencing libraries 
were generated using Ion Plus Fragment Library Kit 48 rxns (Thermo Scientific, United States). The 
library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific). The library was 
sequenced on an Ion S5TM XL platform, and single-end reads of 400 bp/600 bp were generated.

2.4. Data analysis

Single-end reads was assigned to samples based on their unique barcode and truncated by cutting off 
the barcode and primer sequence. Raw reads were quality filtered using the quality control process of 
Cutadapt (Martin, 2011) (version 1.9.1) to obtain high-quality clean reads. Chimeric sequences were 
detected using the UCHIME algorithm (Edgar et al., 2011) by comparing reads to the Silva database 
(Quast et al., 2013). Subsequently, the chimera sequences were removed (Haas et al., 2011). Sequence 
analysis was performed using Uparse software (version 7.0.1001) (Edgar, 2013).

The sequence condition for being assigned to the same operational taxonomic unit (OTU) is that 
the similarity is ≥ 97%. The representative sequences of each OTU are screened and annotated with 
taxonomic information using the Silva database (Mothur algorithm). Based on the abundance of 
the species, the correlation coefficient values (Spearman correlation) of each phylum/genus were 
calculated, the correlation coefficient matrix was obtained, and the filtering conditions were set: the 
cutoff value (> 0.6) set to filter out weakly related connections; node self-joining was filtered out; 
connections with node abundance less than 0.005% were removed. According to the relevant value 
of filtration, taking bacteria as nodes and values as edges, we used Graphviz-2.38.0 to draw network 
diagrams.

Alpha diversity indices in our sample were calculated using QIIME (version 1.7.0) and displayed 
using R software (version 2.15.3). Alpha diversity difference between groups was calculated by 
Welch’s t-test. Unweighted pairwise mean arithmetic (UPGMA) clustering was performed using 
QIIME software (version 1.7.0) as a hierarchical clustering method to analyze beta diversity. Principal 
Coordinate Analysis (PCoA) was performed to get principal coordinates and visualize from complex, 
multidimensional data. A distance matrix of weighted or unweighted UniFrac among samples obtained 
before was transformed to a new set of orthogonal axes, by which the maximum variation factor is 
demonstrated by first principal coordinate, and the second maximum one by the second principal 
coordinate, and so on. The PCoA analysis was displayed by WGCNA package, stat packages, and 
ggplot2 package in R software (version 2.15.3).
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The linear discriminant criterion (LDA Score) filtering value of LEfSe software was set to 2 (Segata 
et al., 2011) to conduct species analysis of differential species among groups. The Tax4Fun software 
was compared with the SILVA database for functional prediction. Tax4Fun functional prediction was 
achieved by the nearest neighbor method based on the minimum 16S rRNA sequence similarity by 
extracting the KEGG database prokaryotic whole genome 16S rRNA gene sequence and aligning 
it to the SILVA SSU Ref NR database using BLASTN algorithm (BLAST Bitscore >1500) to establish a 
correlation matrix and map the prokaryotic whole genome functional information of the KEGG database 
annotated by UProC and PAUDA to the SILVA database to implement the SILVA database function 
annotation. The sequenced samples were clustered out of the OTU using the SILVA database sequence 
as a reference sequence to obtain functional annotation information. Analysis of function difference 
between groups was calculated by Welch’s t-test.

3. Results

3.1. Analysis of basic sequencing information for fecal samples

An average of 77,463 clean reads per sample was acquired. All sequences were assigned to 1,487 
OTU with a species similarity of ≥97%. Based on the results of the OTU analysis obtained through 
clustering, the Venn diagram was used to analyze the shared and unique OTU in the DB and DC groups 
(Figure 1). A total of 1,470 and 1,319 OTU were observed in the DB and DC groups, respectively. The 
two groups shared 1,147 OTU. The number of unique numbers in the DB and DC groups were 323 and 
172, respectively.

OTU - operational taxonomic unit.

Figure 1 - Venn diagram depicting the overlap of OTU in Diannan small-ear sows during induced (DB) and 
spontaneous (DC) estrus.

3.2. Comparison of gut microbial composition between induced and spontaneous estrus of Diannan 
small-ear sows

At the phylum level, the most abundant bacteria in the DB group were Firmicutes (71.32%), 
Bacteroidetes (20.71%), Actinobacteria (2.77%), and Proteobacteria (2.27%) (Figure 2A and Table 2). 
In the DC group, the most abundant bacteria were Firmicutes (59.35%), Bacteroidetes (31.05%), 
Actinobacteria (2.82%), and Proteobacteria (2.77%) (Figure 2A and Table 2). 
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A: The top ten phyla in terms of relative abundance. B: The top ten genera in terms of relative abundance. C: Spearman correlation network of 
the top ten phyla by relative abundance in the sows during induced estrus. D: At the phylum level, the Spearman correlation network showed 
significant differences in the sows of induced estrus (P<0.05). E: Spearman correlation network of the top ten phyla by relative abundance in 
the sows during spontaneous estrus. F: At the phylum level, the Spearman correlation network showed significant differences in the sows of 
spontaneous estrus (P<0.05). G: Spearman correlation network of the top ten genera based on their relative abundance in the sows during induced 
estrus. H: At the genus level, a Spearman correlation network was constructed to identify significant differences in the sows with induced estrus 
(P<0.05). I: Spearman correlation network of the top ten genera based on their relative abundance in sows during spontaneous estrus. J: At the 
genus level, the Spearman correlation network showed significant differences in the sows experiencing spontaneous estrus (P<0.05). 
The red dotted line represents a positive correlation; the green dotted line represents a negative correlation; the size of the point indicates the 
abundance of the species.

Figure 2 - The gut microbial composition and Spearman correlation network of Diannan small-ear sows during 
induced (DB) and spontaneous (DC) estrus.
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At the genus level, the relative abundances of Bacteroides, unidentified_Clostridiales, Lactobacillus, 
Terrisporobacter, and unidentified_ Ruminococcaceae ranked in the top five. The relative abundances of 
the DB group were 9.31, 9.60, 3.81, 7.39, and 2.70%, respectively (Figure 2B and Table 3). The relative 
abundances of the DC group were 11.11, 5.95, 2.97, 3.77, and 4.50%, respectively (Figure 2B and Table 3). 

Spearman correlation networks were constructed for the top ten phyla based on their relative abundance 
in the DB (Figure 2C) and DC (Figure 2E) groups. There was a significant negative correlation between 
Firmicutes and Bacteroidetes in the DB (Figure 2D) and DC (Figure 2F) groups (P<0.05, r = −0.94). 
Spearman correlation networks showed dominant genera in the DB (Figure 2G) and DC (Figure 2I) 
groups. In the DB (Figure 2H) and the DC (Figure 2J) groups, there was a significant positive correlation 
between Bacteroides and Bifidobacterium (P<0.05, r = 0.99).

Table 2 - Top ten phyla in terms of relative abundance
Taxonomy DB (%) DC (%)
Firmicutes 71.32 59.35
Bacteroidetes 20.71 31.05
Actinobacteria 2.77 2.82
Spirochaetes 1.00 2.75
Proteobacteria 2.27 2.77
unidentified_Bacteria 0.56 0.16
Euryarchaeota 0.46 0.38
Tenericutes 0.38 0.31
Fusobacteria 0.13 0.06
Verrucomicrobia 0.04 0.11

DB - sows in induced estrus; DC - sows in spontaneous estrus.

Table 3 - Top ten genera in terms of relative abundance
Taxonomy DB (%) DC (%)
Bacteroides 9.31 11.11
unidentified_Clostridiales 9.60 5.95
Lactobacillus 3.81 2.97
Terrisporobacter 7.39 3.77
unidentified_Ruminococcaceae 2.70 4.50
Bifidobacterium 2.11 2.29
Parabacteroides 2.05 1.21
Streptococcus 1.29 0.69
unidentified_Prevotellaceae 0.77 1.54
Faecalibacterium 1.08 1.57

DB - sows in induced estrus; DC - sows in spontaneous estrus.

3.3. Gut microbial diversity in Diannan small-ear sows during induced and spontaneous estrus

We compared the diversity of gut microbiota between sows in spontaneous and induced estrus. There 
was no significant difference in the Shannon index (Figure 3A), Simpson index (Figure 3B), Chao1 
index (Figure 3C), and ACE index (Figure 3D) between the two groups (P>0.05). PCoA (Figure 3E) and 
UPGMA (Figure 3F) based on weighted_unifrac distance showed clustering of fecal samples in terms 
of β-diversity. The DB and DC groups are not two independent regions, and the cluster branches of the 
two groups are not completely separated. This indicates that the microbial composition of both groups 
is similar.
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3.4. LEfSe differential abundance analysis between induced and spontaneous estrus in Diannan 
small-ear sows

Based on LEfSe analysis, there were 21 biomarkers with LDA scores ≥ 2 in the DB and DC groups. 
Among them, the microorganisms that showed significant differences in the DB group mainly belonged 
to Chloroflexi, while those in the DC group belonged to Fibrobacteres and Spirochaetes (Figure 4A). 
In the phylum level, Spirochaetes and Fibrobacteres had a lower abundance in the DB group, while 
Chloroflexi was higher than the DC group (Figure 4B). At the genus level, the relative abundance of 
Stenotrophomonas, Neisseria, Anaerofustis, and Terrisporobacter was higher in the DB group, while 
Fibrobacter was lower in the DC group.

A: Shannon index; B: Simpson index; C: Chao1 index; D: ACE index; E: PCoA analysis; F: UPGMA analysis.

Figure 3 - Gut microbial diversity in Diannan small-ear sows during induced (DB) and spontaneous (DC) estrus.
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1 These differences were determined using the criteria of an LDA>2 and P<0.05.
A: Cladogram plot of microbiome differences; B: histogram of LDA score in microbiome differences.

Figure 4 - Histograms of significant differences1 in the microbiome of Diannan small-ear sows during induced 
(DB) and spontaneous (DC) estrus.

3.5. Functional analysis of gut microbiota in induced and spontaneous estrus in Diannan small-ear sows

The potential functional capacities of the fecal microbiome were predicted using Tax4Fun. At level 2 
of KEGG pathways, we selected the 10 most enriched pathways, including carbohydrate metabolism, 
membrane transport, replication and repair, translation, amino acid metabolism, energy metabolism, 
nucleotide metabolism, signal transduction, metabolism of cofactors and vitamins, and glycan 
biosynthesis and metabolism (Figure 5A). At level 3 of KEGG pathways, the 10 most enriched pathways 
include transporters, DNA repair and recombination proteins, two-component systems, transfer RNA 
biogenesis, purine metabolism, pyrimidine metabolism, amino acid-related enzymes, ABC transporters, 
and peptidases (Figure 5B).
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A: Level 2; B: level 3.
DB - sows in induced estrus; DC - sows in spontaneous estrus. 

Figure 5 - Predicted abundance of function annotations for the KEGG pathways in the feces of Diannan small-ear sows.
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Compared with spontaneous estrus, induced estrus did not change the composition and diversity of 
intestinal microorganisms in Diannan small-ear sows, but the relative abundance of several bacterial 
genera changed significantly. In this study, 16S rRNA sequencing technology was used to investigate 
the intestinal microorganisms present in the feces of the sows. The composition and diversity 
characteristics of intestinal microbiota in Diannan small-ear sows were examined during induced and 
spontaneous estrus, and the correlation and function of the flora were explored. The relative abundance 
of Stenotrophomonas, Neisseria, Anaerofustis, and Terrisporobacter in the feces of the sows with 
induced estrus was higher than that of sows with spontaneous estrus, while the relative abundance of 
Fibrobacter was decreased.
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3 or 4) from weaning to estrus, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla 
(Xu et al., 2020). Firmicutes, Bacteroidetes, and Fusobacteria were the three dominant phyla in the 
fecal samples of Dholes, and the dominant genera were Fusobacterium, Bacteroides, and Clostridium 
(Wu et al., 2020b). In the feces of buffaloes in estrus, Clostridiales was found to be the most abundant, 
and only Bacteroidales were present exclusively during estrus (Sharma et al., 2021). The relative 
abundance of Firmicutes and Bacteroidetes in the feces of these animals during estrus was the highest, 
followed by one of Actinobacteria, Proteobacteria, and Fusobacteria in third place. 

Actinobacteria is the third dominant bacterial phylum in southern Yunnan small-eared pigs during the 
estrus period. Actinobacteria are pivotal in the maintenance of gut homeostasis, and Bifidobacteria 
in particular are widely used as probiotics (Binda et al., 2018). There was a significant positive 
correlation between Bacteroides and Bifidobacterium. Previous studies have supported the potential of 
Lactobacillus to enhance intestinal metabolic capacity, maintain intestinal flora balance, and modulate 
the host immune system (Valeriano et al., 2017). Bifidobacteria ferment to produce short-chain fatty 
acids (SCFA), which have many health-promoting properties, including the maintenance of intestinal 
barrier integrity and anti-inflammatory functions (Sadeghpour Heravi and Hu, 2023). Bacteroides 
and Bifidobacteria have co-evolved to utilize various diets and host-derived glycans. They coordinate 
different glycan utilization systems to maintain gut microbial symbiosis and improve the fitness of their 
own or other communities (Singh, 2019).

Differential flora analysis showed that the relative abundance of Stenotrophomonas, Neisseria, 
Anaerofustis, and Terrisporobacter in Diannan small-ear sows during induced estrus was significantly 
higher than that during spontaneous estrus. Stenotrophomonas are straight rod-shaped, non-fermenting 
bacteria that can utilize monosaccharides or polysaccharides as carbon sources. Stenotrophomonas 
maltophilia is an opportunistic human pathogen that normally spares healthy individuals; however, it is 
associated with high morbidity and mortality in severely immunocompromised and frail individuals 
(An and Berg, 2018). Non-pathogenic Neisseria can cause invasive infections. However, Neisseria 
lactamica, a nonpathogenic commensal, has been shown to inhibit the colonization of Neisseria 
meningitidis (Dorey et al., 2019).

Some sex hormones can affect the composition of gut microbes. Studies have reported the direct 
effects of sex hormones on bacterial metabolism, growth, and the expression of virulence (García-
Gómez et al., 2013). Importantly, studies show that the expression of steroid nuclear receptors, 
including estrogen receptor-β, can determine the composition of the intestinal microbiota (Mulak et al., 
2014). 16S rRNA sequencing of feces from estrus-synchronous Simmental cows revealed alterations 
in the structure, composition, and function of the gut microbiota, and these changes were mediated 
by reproductive hormones, specifically estradiol (Wu et al., 2022). Fluctuations in reproductive 
hormone concentrations, particularly progesterone, lead to reduced fecal microbiome diversity 
during pregnancy and lactation (Mallott et al., 2020). In an in vitro study, progesterone stimulated the 
growth of Lactobacillus reuteri (Sovijit et al., 2021). Studies have shown that progesterone promotes 
the growth of Bifidobacterium during late pregnancy (Nuriel-Ohayon et al., 2019). Induction of estrus 
affects specific bacterial taxa in the fecal microbiota of Diannan small-ear sows but does not alter the 
overall community structure.

5. Conclusions

The findings of the present study suggest that Firmicutes, Bacteroidetes, Actinobacteria, and 
Proteobacteria are dominant in Diannan small-ear sows in estrus. There is a significant negative 
correlation between Firmicutes and Bacteroidetes and a significant positive correlation between 
Bacteroides and Bifidobacterium. The relative abundance of Stenotrophomonas, Neisseria, Anaerofustis, 
and Terrisporobacter in Diannan small-ear sows is significantly higher during induced estrus than 
during spontaneous estrus. Sex hormone-induced estrus alters the relative abundance of specific 
microbes in the feces of Diannan small-ear sows, but it does not affect the overall composition and 
diversity.
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