# Composição florística dos afloramentos rochosos do Morro do Forno, Altinópolis, São Paulo

Rejane Barbosa de Oliveira<sup>1</sup> & Silvana Aparecida Pires de Godoy<sup>2</sup>

Biota Neotropica v7 (n2) - http://www.biotaneotropica.org.br/v7n2/pt/abstract?article+bn00507022007

Recebido em 17/08/06 Versão reformulada recebida em 08/02/07 Publicado em 01/05/07

<sup>1</sup>Departamento de Biologia, Laboratório de Sistemática Vegetal, Faculdade de Filosofia,
Ciências e Letras de Ribeirão Preto, Universidade de São Paulo – USP,
Av. Bandeirantes, 3900, CEP 14040-901, Monte Alegre, Ribeirão Preto, SP, Brasil, http://www.ffclrp.usp.br

<sup>2</sup>Escola de Artes, Ciências e Humanidades, Universidade de São Paulo – USP,
Av. Arlindo Bettio, 1000, CEP 03828-000, Ermelindo Matarazzo, São Paulo, SP, Brasil
Autor para correspondência: Silvana Aparecida Pires de Godoy,
e-mail: sapgodoy@usp.br, http://www.uspleste.usp.br

#### **Abstract**

Oliveira, R.B. and Godoy, S.A.P. Floristic composition of the rock outcrops of the Morro do Forno, Altinópolis-SP. *Biota Neotrop*. May/Aug 2007 vol. 7, no. 2 http://www.biotaneotropica.org.br/v7n2/pt/abstract?article+bn00507022007. ISSN 1676-0603.

Rock outcrops on the plateaus of hills have peculiar vegetation. The major part of the species occurring on these areas have various features that allow their survival under adverse environmental conditions as poor and sandy soil with intense solar radiation and great temperature ranging from day and night. These particular characteristics aroused the interest in the study of the flora on rock outcrops of Morro do Forno (Altinópolis-SP). A list of 157 species of 48 families was recorded. Fabaceae (14 spp.), Asteraceae (12 spp.), Poaceae (12 spp.), Rubiaceae (11 spp.), Malpighiaceae (9 spp.) and Melastomataceae (8 spp.) are the families with more number of species. The herbaceous-shruby stratum characterizes the area (61%), followed by arboreous (19%); lianas (11%) and subshruby (9%) are less representative. Many of the species occurring on the area are present another Brazilian rocky outcrops as, for example, the "campos rupestres" of the Minas Gerais state (Serra do Cipó and Serra da Canastra) and the "cerrados rupestres" of the Mato Grosso state (Chapada dos Guimarães).

Keywords: flora, rock outcrops, Morro do Forno, São Paulo.

#### Resumo

Oliveira, R.B. and Godoy, S.A.P. Composição florística dos afloramentos rochosos do Morro do Forno, Altinópolis, São Paulo. *Biota Neotrop*. May/Aug 2007 vol. 7, no. 2 http://www.biotaneotropica.org.br/v7n2/pt/abstract?article+bn00507022007. ISSN 1676-0603.

Áreas de afloramentos rochosos em topos de morros abrigam uma vegetação bastante peculiar. Muitas das espécies que ocorrem nessas áreas apresentam uma série de características que permitem sua sobrevivência num ambiente com solo pobre e arenoso, com alta insolação e grande oscilação de temperatura entre o dia e a noite. Essas características particulares despertaram o interesse no estudo da flora das áreas de afloramentos rochosos do Morro do Forno (Altinópolis-SP). A flora apresenta um total de 157 espécies distribuídas em 48 famílias. Fabaceae (14 spp.), Asteraceae (12 spp.), Poaceae (12 spp.), Rubiaceae (11 spp.), Malpighiaceae (9 spp.) e Melastomataceae (8 spp.) são as famílias com o maior número de espécies. O estrato herbáceo-arbustivo caracteriza a área (61%), seguido pelo arbóreo (19%), sendo de menor representatividade as lianas (11%) e os subarbustos (9%). Muitas das espécies que ocorrem na área estão presentes em outros afloramentos rochosos brasileiros como, por exemplo, nos campos rupestres da Serra do Cipó e Serra da Canastra em Minas Gerais e nos cerrados rupestres da Chapada dos Guimarães no Mato Grosso.

Palavras-chave: flora, afloramentos rochosos, Morro do Forno, São Paulo.

## Introdução

O Morro do Forno, situado no município de Altinópolis-SP, chama a atenção por apresentar três grandes áreas de afloramentos rochosos cobertas por uma vegetação que difere da vegetação típica de cerrado que ocorre na região. Áreas de afloramentos rochosos semelhantes a essas são relativamente frequentes em várias partes do mundo (Mares 1997). O estudo dessas áreas em diferentes localidades da região tropical tem revelado uma gama de similaridades ambientais, em especial aquelas relacionadas às condições edáficas e microclimáticas, decorrentes das diferenças no estágio de decomposição das rochas (Porembski et al. 1998). Esses afloramentos têm origem geológica bastante antiga, em geral Pré-cambriana, e apresentam como características: a ausência quase completa de cobertura de solo, alto grau de insolação e evaporação e grande heterogeneidade topográfica (Ibisch et al. 1995, Giulietti et al. 1997, Porembski et al. 1998, Parmentier 2003). Essas características peculiares levam ao estabelecimento de uma cobertura vegetal distinta da área adjacente (Gröger & Barthlott 1996, Porembski & Barthlott 2000), formando o que muitos autores chamam de "ilhas xéricas" (Gröger & Barthlott 1996, Porembski et al. 1998, Parmentier 2003). As plantas que se estabelecem sobre os afloramentos crescem diretamente sobre a rocha exposta ou em ilhas de vegetação que apresentam tamanhos variados, gerando um mosaico de acordo com a declividade da rocha e a profundidade do substrato (Meirelles et al. 1999).

Vários estudos sobre a vegetação associada a afloramentos rochosos têm sido realizados na África (Porembski et al. 1996, Parmentier 2003) e na América do Sul (Ibisch et al. 1995, Gröger & Barthlott 1996). No Brasil, a maioria dos trabalhos concentra-se nos campos de altitude (Porembski et al. 1998, Meireles et al. 1999, Scarano 2002), nos cerrados rupestres (Oliveira-Filho & Martins 1986) e, em especial, nos campos rupestres (Andrade et al. 1986, Harley & Simmons 1986, Giulietti et al. 1987, Giulietti & Pirani 1988, Harley 1995, Mello-Silva 1995, Stannard 1995, Giulietti et al. 1997, Munhoz & Proença 1998, Conceição & Giulietti 2002, Guedes & Orge 1998, Romero & Nakajima 1999, Giulietti et al. 2000, Romero 2002). Esses estudos vêm contribuindo com informações valiosas sobre a flora desses ambientes, suas características ecológicas e biogeográficas, revelando que apresentam uma biodiversidade elevada, grande número de endemismos e uma série de espécies dotadas de adaptações à sobrevivência em ambientes com condições ambientais hostis.

O presente estudo teve como objetivo incrementar as informações sobre a diversidade e distribuição das espécies vegetais que crescem sobre áreas de afloramentos rochosos, apresentando um levantamento florístico de três áreas de afloramentos rochosos no Morro do Forno, Altinópolis-SP.

### Material e Métodos

### 1. Área de estudo

O Morro do Forno (Figura 1) encontra-se dentro dos limites do município de Altinópolis, situado a nordeste do estado de São Paulo (21° 02' 16" S e 47° 19' 18" W) (Figura 2). O acesso à área é feito pela rodovia Joaquim Ferreira (km 133) que liga os municípios de Altinópolis e Cajuru.

A região se encaixa entre os domínios dos climas Cwa e Aw (Köppen 1948), numa zona de transição entre um clima tropical influenciado pelo fator altitude e um clima tropical quente, com verões úmidos e invernos secos, apresentando tendências para um quadro semi-úmido (Nimer 1977). A temperatura varia de acordo com a latitude e com a elevação, sendo que a média anual fica em torno dos 22 °C. A pluviosidade está concentrada nos meses mais quentes



Figura 1. Vista da face leste do Morro do Forno, Altinópolis-SP.

Figure 1. View of the east face of the Morro do Forno, Altinópolis-SP.

(dezembro a fevereiro), quando ocorre 50% da precipitação, enquanto nos meses mais frios (junho e julho) raramente chove.

Sob o ponto de vista estrutural, o município de Altinópolis está inserido na Formação Botucatu. Esta formação compreende um conjunto de arenitos predominantemente vermelhos, cujo acúmulo contribuiu para a formação do Morro do Forno. Rochas basálticas resultantes da ação eruptiva da Formação Geral cobrem esse pacote arenítico, formando as extensas áreas de afloramentos rochosos que cobrem os platôs que ocorrem nas regiões mais altas do morro (Troppmair & Tavares 1985, Petri & Fúlfaro 1988). Sob o ponto de vista geomorfológico, a área está localizada na Província Geomorfológica das Cuestas Basálticas. Na região de Altinópolis, as cuestas apresentam frontes suavizadas que se desfazem em blocos, formando morros testemunhos isolados que marcam a continuidade dessa configuração topográfica (Troppmair & Tavares 1985, Petri & Fúlfaro 1988).

O Morro do Forno é um dos exemplos de maior destaque desse tipo de relevo residual que ocorre na região (Troppmair & Tavares 1985). O basalto que cobre o Morro do Forno está bastante erodido. Em muitas áreas o solo encontra-se extremamente trabalhado e o basalto permanece apenas na forma de grandes blocos rochosos que podem ser encontrados em várias partes do morro. Nas áreas onde o solo está relativamente trabalhado, cresce uma densa vegetação de cerrado, onde predominam espécies típicas do cerradão, com destaque para Caryocar brasiliense Cambess., Copaifera langsdorffii Desf. e Pterodon emarginatus Vogel. Os blocos rochosos, por sua vez, estão cobertos por espécies rupícolas, predominando as de Bromeliaceae e Cactaceae. À medida que o morro vai ganhando altitude, o solo tornase menos trabalhado, dando lugar a um cerrado de porte mais baixo e mais aberto, predominando espécies arbustivas de Melastomataceae e Myrtaceae. Em altitudes maiores, formam-se platôs delimitados por escarpas abruptas, onde aparecem áreas de afloramentos rochosos cobertos por espécies de Melastomataceae, Poaceae e Velloziaceae, típicas dos campos rupestres.

Neste trabalho foram utilizadas as três áreas de maior extensão de afloramentos rochosos. Essas áreas apresentam cerca de 16 ha, sendo marcadas por escarpas abruptas que delimitam os platôs onde estão localizados os afloramentos rochosos. Duas dessas áreas localizam-se na face leste, sendo que a primeira apresenta uma altitude que varia de 796 a 798 m, enquanto a segunda está a uma altitude entre 822 e

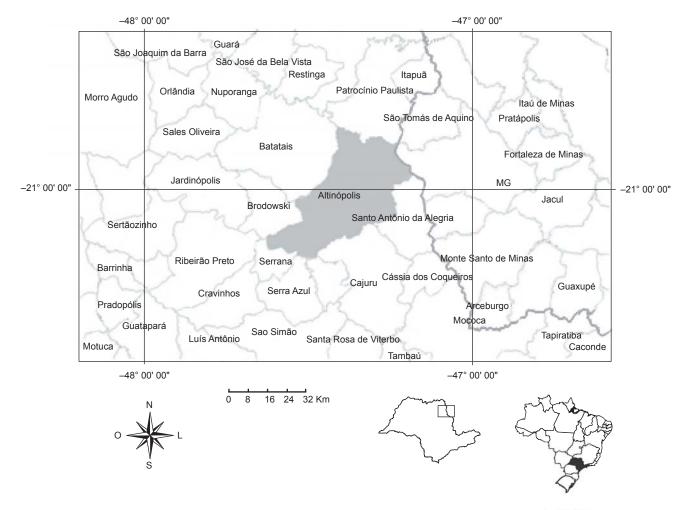



Figura 2. Mapa de localização do Município de Altinópolis, São Paulo. Modificado do Sistema de Informação Ambiental - SinBiota. Disponível no site - http://sinbiota.cria.org.br/atlas. Acessado em 02/2007.

Figure 2. Location map of the Altinópolis municipal district, São Paulo. Modified from the Sistema de Informação Ambiental - SinBiota. Available in http://sinbiota.cria.org.br/atlas. Available in http://www.igc.sp.gov.br/mapras\_ribpreto.htm. Acessed in 02/2007.

825 m. A terceira área está localizada na face sul e apresenta uma altitude de cerca de 900 m.

### 2. Levantamento florístico

As coletas quinzenais tiveram início em fevereiro de 2003 e término em junho de 2004 com duração de um dia e foram restritas às faces leste e sul, onde há maior concentração de afloramentos rochosos. Os espécimes botânicos em estado fértil foram coletados, anotando-se o hábito de cada espécie, e posteriormente herborizados. O hábito foi definido considerando-se a associação dos dados observados como altura, ramificação, indícios de crescimento secundário, ocupação do substrato, formas de crescimento, além do descrito na literatura para a espécie.

As identificações foram feitas com o auxílio da literatura específica, consultas a especialistas e comparações com material dos herbários HUFU, SPF e SPFR. Os materiais testemunhos foram depositados no herbário SPFR e algumas duplicatas foram enviadas aos herbários HUFU e SPF. A listagem das espécies foi organizada em ordem alfabética de família e o sistema de classificação adotado foi o recomendado por APGII (2003). Atualizações desse sistema, bem como a grafia correta dos nomes científicos e de autores seguem

o indicado no site http://www.mobot.org. As "pteridófitas" são citadas após as Angiospermas, no final da lista e segue o sistema recomendado por Judd et al. (1999).

Devido à declividade e ao estado de erosão das rochas, há a formação de uma série de microhabitats nas áreas de afloramentos, onde se observa um certo padrão de ocupação das espécies de acordo com sua afinidade ao substrato. Esses microhabitats são descritos a seguir: 1. frestas: espaços estreitos entre as rochas onde há acúmulo de sedimentos provenientes da decomposição das rochas. Nesses espaços forma-se uma camada de solo capaz de reter água e sedimentos, sendo que a vegetação observada é predominantemente arbustivo-arbórea (Figura 3a); 2. ilhas de solo: áreas mais ou menos arredondadas e delimitadas pelas rochas, onde há a presença de camadas de solo arenoso com uma profundidade média de 15 cm. Há uma retenção significativa de água e presença constante de cascalho; crescem nesse microhabitat principalmente espécies herbáceas (Figura 3b); 3. rocha: ambiente formado pela camada de basalto que cobre os afloramentos. Nesses locais a rocha está praticamente intacta, não havendo sobre ela deposição de solo e nem retenção de água; ocorrem nesse ambiente principalmente bromélias, velózias e cactos (Figura 3c); 4. paredão: regiões bastante inclinadas, onde a cobertura de basalto encontra-se em avançado estado de erosão, deixando à mostra o arenito avermelhado; esse ambiente é ocupado por poucas espécies, ocorrendo principalmente representantes das famílias Bromeliaceae, Gesneriaceae e Velloziaceae (Figura 3d).

#### 3. Análise do solo

As amostras foram retiradas das ilhas de solo que se formam a partir da meteriorização das rochas. Foram retiradas 15 amostras simples de uma profundidade de 0-10 cm cada, em cada uma das três áreas estudadas. As 15 amostras simples de cada área foram misturadas para montar três amostras compostas, uma de cada área, as quais foram enviadas ao Laboratório do Programa de Avaliação da Fertilidade do Solo do Departamento de Recursos Naturais e Proteção Ambiental da Universidade Federal de São Carlos para análises químicas. As análises físicas foram realizadas no Laboratório de Análises Ambientais da Faculdade de Filosofia, Ciência e Letras de Ribeirão Preto, através do método de peneiração em malhas.

#### Resultados e Discussão

No total, foram coletadas 157 espécies pertencentes a 118 gêneros e 48 famílias (Tabela 1). As sete famílias mais ricas em espécies, Fabaceae (14 spp.), Asteraceae e Poaceae (12 spp. cada), Rubiaceae (11 spp.), Malpighiaceae (9 spp.), Melastomataceae (8 spp.) e Apocynaceae (7 spp.), compreendem 46,2% do total de espécies levantadas. Além das espécies coletadas durante a execução deste trabalho, há o registro no Herbário do Jardim Botânico do Rio de Janeiro (disponível *online*: http://www.jbrj.gov.br/colecoes/herbario/jabot/jabot5.htm) de duas outras espécies para a área. Estas espécies são: *Rhabdadenia* sp. (Apocynaceae) – Material testemunho: Mello-Silva, R., 2186 e *Alibertia myrciifolia* K.Schum. (Rubiaceae) – Material testemunho: Forzza, R.C., 2454. Estes registros sugerem que a área de estudo pode apresentar uma riqueza de espécies ainda maior do que a relatada durante a realização deste trabalho.

A composição florística da área mostrou-se predominantemente herbáceo-arbustiva (61%), embora com cobertura arbórea bastante









**Figura 3.** Microhabitats. a) Fresta; nota-se a presença de depósito de solo e desenvolvimento de espécies arbóreas e arbustivas. b) Ilha de solo; nota-se a presença de solo arenoso, com pedras de cascalho, onde crescem espécies herbáceas c) Rocha, nota-se a ausência completa de solo com o desenvolvimento de velózias. d) Paredão; nota-se o afloramento do arenito avermelhado com um espécime de *Sinningia araneosa* Chautems.

**Figure 3.** Microhabitats. a) Rock slite; it is observed accumulation of ground and development of both arboreous and shruby species. b) Soil island; it is observed sandy soil with presence of gravel, where grow herbaceous species. c) Rock, it is observed complete absence of the soil, but with development of species of the velozia. d) Rock wall; it is observed outcrop of reddish sandstone with presence of the *Sinningia araneosa* Chautems.

**Tabela 1.** Lista das espécies coletadas nos afloramentos rochosos do Morro do Forno, Altinópolis-SP. Hab = hábito: ARB = arbusto, ARV = árvore, EPI = epífita, ERV = erva, HEM = hemiparasita, LIA = liana, PALM = palmeira, SAP = saprófita, SUB = subarbusto. MH = micro-habitat: F = fresta, Is = ilha de solo, P = paredão, Re = rocha exposta, R = rocha. \* Observado, mas não coletado.

**Table 1.** Species list recorded from Morro do Forno rock outcrops, Altinópolis-SP, Brazil). Hab = habit: ARB = shrub, ARV = tree, EPI = epiphytic, ERV = herb, HEM = hemiparasite, LIA = liana, PALM = palm, SAP = saprophyte, SUB = subshrub. MH = microhabitat: F = cleft, Is = soil-island, P = rocky slope, Re = exposed rocky, R = rock. \* Observed, but not sampled.

| Família/Espécie                                                           | Hábito | Microhabitat | Material testemunho |
|---------------------------------------------------------------------------|--------|--------------|---------------------|
| AMARANTHACEAE                                                             |        |              |                     |
| Froelichia procera (Seub. & Mart.) Pedersen                               | SUB    | F            | R.B. Oliveira 196   |
| Gomphrena prostrata Desf.                                                 | ERV    | Is           | R.B. Oliveira 320   |
| ANACARDIACEAE                                                             |        |              |                     |
| Tapirira guianensis Aubl.                                                 | ARV    | F            | R.B. Oliveira 290   |
| ANNONACEAE                                                                |        |              |                     |
| Xylopia aromatica (Lam.) Mart.                                            | ARV    | F            | *                   |
| APOCYNACEAE                                                               |        |              |                     |
| Aspidosperma tomentosum Mart.                                             | ARV    | F            | R.B. Oliveira 269   |
| Ditassa acerosa Mart.                                                     | LIA    | F            | R.B. Oliveira 76    |
| Ditassa oxypetala Decne.                                                  | SUB    | F            | R.B. Oliveira 140   |
| Ditassa retusa Mart.                                                      | LIA    | F            | R.B. Oliveira 33    |
| Hemipogon luteus E. Fourn.                                                | LIA    | F            | R.B. Oliveira 90    |
| Odontadenia lutea (Vell.) Markgr.                                         | LIA    | F            | R.B. Oliveira 119   |
| Temnadenia violacea (Vell.) Miers                                         | LIA    | F            | R.B. Oliveira 171   |
| ARALIACEAE                                                                |        |              |                     |
| Schefflera vinosa (Cham. & Schltdl.) Frodin & Fiaschi                     | ARV    | F            | R.B. Oliveira 165   |
| ARECACEAE                                                                 |        |              |                     |
| Syagrus flexuosa (Mart.) Becc.                                            | PAL    | F            | R.B. Oliveira 10    |
| Syagrus petraea (Mart.) Becc.                                             | PAL    | F            | R.B. Oliveira 36    |
| ASTERACEAE                                                                |        |              |                     |
| Dasyphyllum sprengelianum (Gardner) Cabrera var. sprengelianum            | ARB    | F            | R.B. Oliveira 89    |
| Dasyphyllum sprengelianum (Gardner) Cabrera var. inerme (Gardner) Cabrera | ARB    | F            | R.B. Oliveira 410   |
| Eupatorium barbacense Hieron.                                             | ARB    | F            | R.B. Oliveira 461   |
| Eupatorium oxylepis DC.                                                   | ARB    | F            | R.B. Oliveira 46    |
| Gochnatia barrosii Cabrera                                                | ARB    | F            | R.B. Oliveira 470   |
| Gochnatia polymorpha (Less.) Cabrera                                      | ARB    | F            | R.B. Oliveira 203   |
| Mikania microdonta DC.                                                    | LIA    | F            | R.B. Oliveira 146   |
| Stevia cinerascens Sch. Bip. ex Baker                                     | SUB    | F            | R.B. Oliveira 141   |
| Trichogonia melissifolia (DC.) Mattf.                                     | LIA    | F            | R.B. Oliveira 452   |
| Vernonia holosericea Mart.                                                | SUB    | F            | R.B. Oliveira 209   |
| Vernonia onopordioides Baker                                              | ARB    | F            | R.B. Oliveira 66    |
| Vernonia polyanthes Less.                                                 | ARB    | F            | R.B. Oliveira 469   |
| Vernonia rufogrisea A.StHil.                                              | SUB    | F            | R.B. Oliveira 100   |
| BIGNONIACEAE                                                              |        |              |                     |
| Anemopaegma acutifolium DC.                                               | ARB    | F            | R.B. Oliveira 216   |
| Arrabidaea pulchella Bureau                                               | LIA    | F            | R.B. Oliveira 475   |
| Distictella elongata (Vahl) Urb.                                          | LIA    | F            | R.B. Oliveira 12    |
| Fridericia speciosa Mart.                                                 | LIA    | F            | R.B. Oliveira 37    |
| Jacaranda caroba (Vell.) A. DC.                                           | ARV    | F            | R.B. Oliveira 198   |
| Pyrostegia venusta (Ker Gawl.) Miers                                      | LIA    | F            | *                   |
| BROMELIACEAE                                                              |        |              |                     |
| Acanthostachys strobilacea (Schult. f.) Klotzsch                          | EPI    | F            | R.B. Oliveira 149   |
| Pitcairnia flammea Lindl. var. floccosa L.B. Sm.                          | ERV    | P            | R.B. Oliveira 19    |
| Tillandsia loliacea Mart. ex Schult. f.                                   | EPI    | -            | R.B. Oliveira 277   |
| Tillandsia pohliana Mez                                                   | EPI    |              | R.B. Oliveira 298   |

Tabela 1. Continuação...

| Família/Espécie                                                                                                 | Hábito | Microhabitat | Material<br>testemunho              |
|-----------------------------------------------------------------------------------------------------------------|--------|--------------|-------------------------------------|
| Tillandsia recurvata (L.) L.                                                                                    | EPI    | -            | R.B. Oliveira 233                   |
| Tillandsia streptocarpa Baker                                                                                   | EPI    | -            | R.B. Oliveira 258                   |
| CACTACEAE                                                                                                       |        |              |                                     |
| Epiphyllum phyllanthus (L.) Haw.                                                                                | ARB    | Re           | R.B. Oliveira 65                    |
| Pilosocereus machrisii (E.Y.Dawson) Backeb.                                                                     | ARB    | Re           | R.B. Oliveira 237                   |
| CHRYSOBALANACEAE                                                                                                |        |              |                                     |
| Hirtella gracilipes (Hook.f.) Prance                                                                            | ARV    | F            | R.B. Oliveira 31                    |
| CLUSIACEAE                                                                                                      |        |              |                                     |
| Kielmeyera lathrophyton Saddi                                                                                   | ARV    | F            | R.B. Oliveira 385                   |
| Kielmeyera rubriflora Cambess.                                                                                  | ARV    | F            | R.B. Oliveira 51                    |
| Commelinaceae                                                                                                   |        |              |                                     |
| Commelina nudiflora L.                                                                                          | ERV    | F            | R.B. Oliveira 34                    |
| CYPERACEAE                                                                                                      |        |              |                                     |
| Cyperus congestus Vahl                                                                                          | ERV    | Is           | R.B. Oliveira 26                    |
| Cyperus flavus J. Presl & C. Presl                                                                              | ERV    | Is           | R.B. Oliveira 401                   |
| Cyperus sp.                                                                                                     | ERV    | Is           | R.B. Oliveira 369                   |
| Rhynchospora sp.                                                                                                | ERV    | Is           | R.B. Oliveira 173                   |
| Indeterminada                                                                                                   | ERV    | Is           | R.B. Oliveira 346                   |
| DILLENIACEAE                                                                                                    |        |              |                                     |
| Davilla rugosa Poir.                                                                                            | ARB    | F            | R.B. Oliveira 120                   |
| ERIOCAULACEAE                                                                                                   |        | _            |                                     |
| Paepalanthus polyanthus (Bong.) Kunth                                                                           | ERV    | Is           | R.B. Oliveira 170                   |
| Paepalanthus tortilis (Bong.) Koern.                                                                            | ERV    | Is           | R.B. Oliveira 73                    |
| Syngonanthus gracilis (Bong.) Ruhland                                                                           | ERV    | Is           | R.B. Oliveira 342                   |
| Syngonanthus niveus (Bong.) Ruhland                                                                             | ERV    | Is           | R.B. Oliveira 465                   |
| ERYTHROXYLACEAE                                                                                                 | 2111   | 10           | 1021 01110110 100                   |
| Erythroxylum daphnites Mart.                                                                                    | ARV    | F            | R.B. Oliveira 283                   |
| Erythroxylum deciduum A. StHil.                                                                                 | ARV    | F            | R.B. Oliveira 307                   |
| Erythroxylum suberosum A. StHil.                                                                                | ARV    | F            | R.B. Oliveira 359                   |
| EUPHORBIACEAE                                                                                                   | 71111  | 1            | R.B. Onvena 337                     |
| Chamaesyce hyssopifolia (L.) Small                                                                              | ERV    | F            | R.B. Oliveira 318                   |
| Croton glandulosus L.                                                                                           | ERV    | F            | R.B. Oliveira 54                    |
| Manihot caerulescens Pohl                                                                                       | SUB    | F            | R.B. Oliveira 08                    |
| Pera glabrata (Schott) Poepp. ex Baill.                                                                         | ARV    | F            | R.B. Oliveira 145                   |
| FABACEAE                                                                                                        | AKV    | Г            | K.B. Olivella 143                   |
| Anadenanthera falcata (Benth.) Speg.                                                                            | ARV    | F            | R.B. Oliveira 296                   |
|                                                                                                                 |        |              | R.B. Oliveira 274                   |
| Andira vermifuga Mart. ex Benth.                                                                                | ARV    | F            | R.B. Oliveira 2/4 R.B. Oliveira 315 |
| Chamaecrista cathartica (Mart.) H.S. Irwin & Barneby var. cathartica                                            | ARB    | F            |                                     |
| Chamaecrista cathartica (Mart.) H.S. Irwin & Barneby var. paucijuga (H.S. Irwin & Barneby) H.S. Irwin & Barneby | ARB    | F            | R.B. Oliveira 98                    |
| Chamaecrista debilis (Vogel) H.S. Irwin & Barneby                                                               | ARB    | F            | R.B. Oliveira 423                   |
| Copaifera langsdorffii Desf.                                                                                    | ARV    | F            | R.B. Oliveira 28                    |
| Diptychandra aurantiaca Tul.                                                                                    | ARV    | F            | R.B. Oliveira 300                   |
| Harpalyce brasiliana Benth.                                                                                     | ARV    | F            | R.B. Oliveira 468                   |
| Periandra mediterranea (Vell.) Taub.                                                                            | ARB    | F            | R.B. Oliveira 144                   |
| Pterodon emarginatus Vogel.                                                                                     | ARV    | F            | R.B. Oliveira 13                    |
| Senna rugosa (G. Don) H.S. Irwin & Barneby                                                                      | ARB    | F            | R.B. Oliveira 04                    |
| Stryphnodendron polyphyllum Mart.                                                                               | ARV    | F            | R.B. Oliveira 295                   |
| Stryphnodendron rotundifolium Mart.                                                                             | ARV    | F            | R.B. Oliveira 200                   |
| Stylosanthes gracilis Kunth                                                                                     | SUB    | F            | R.B. Oliveira 195                   |

Tabela 1. Continuação...

| Família/Espécie                                        | Hábito | Microhabitat | Material testemunho |
|--------------------------------------------------------|--------|--------------|---------------------|
| Zornia latifolia Sm.                                   | ERV    | F            | R.B. Oliveira 478   |
| GESNERIACEAE                                           |        |              |                     |
| Sinningia araneosa Chautems                            | ERV    | P            | R.B. Oliveira 415   |
| LAMIACEAE                                              |        |              |                     |
| Hypenia reticulata (Mart. ex Benth.) Harley            | SUB    | F            | R.B. Oliveira 158   |
| Hyptis sp.                                             | SUB    | F            | R.B. Oliveira 108   |
| Vitex polygama Cham.                                   | ARV    | F            | R.B. Oliveira 360   |
| LAURACEAE                                              |        |              |                     |
| Ocotea corymbosa (Meisn.) Mez                          | ARV    | F            | R.B. Oliveira 181   |
| LOGANIACEAE                                            |        |              |                     |
| Strychnos brasiliensis (Spreng.) Mart.                 | LIA    | F            | R.B. Oliveira 177   |
| MALPIGHIACEAE                                          |        |              |                     |
| Banisteriopsis nummifera (A. Juss.) B. Gates           | LIA    | F            | R.B. Oliveira 330   |
| Banisteriopsis pubipetala (A.Juss.) Cuatrec.           | LIA    | F            | R.B. Oliveira 272   |
| Banisteriopsis stellaris (Griseb.) B. Gates            | LIA    | F            | R.B. Oliveira 60    |
| Byrsonima coccolobifolia Kunth                         | ARV    | F            | R.B. Oliveira 340   |
| Byrsonima intermedia A. Juss.                          | ARB    | F            | R.B. Oliveira 328   |
| Heteropterys byrsonimifolia A. Juss.                   | LIA    | F            | R.B. Oliveira 303   |
| Heteopterys cochleosperma A. Juss.                     | LIA    | F            | R.B. Oliveira 277   |
| Heteropterys pteropetala A. Juss.                      | ARB    | F            | R.B. Oliveira 15    |
| Peixotoa reticulata Griseb.                            | ARB    | F            | R.B. Oliveira 321   |
| MELASTOMATACEAE                                        |        | _            |                     |
| Cambessedesia hilariana (Kunth) DC.                    | ERV    | Is           | R.B. Oliveira 358   |
| Leandra lacunosa Cogn.                                 | ARB    | F            | R.B. Oliveira 230   |
| Macairea radula (Bonpl.) DC.                           | ARB    | F            | R.B. Oliveira 245   |
| Marcetia taxifolia (A.StHil.) DC.                      | SUB    | F            | R.B. Oliveira 153   |
| Miconia albicans (Sw.) Triana                          | ARB    | F            | R.B. Oliveira 169   |
| Miconia rubiginosa (Bonpl.) DC.                        | ARB    | F            | R.B. Oliveira 212   |
| Miconia stenostachya DC.                               | ARB    | F            | R.B. Oliveira 260   |
| Tibouchina stenocarpa (DC.) Cogn.                      | ARV    | F            | R.B. Oliveira 93    |
| MYRISTICACEAE                                          | THEY   | 1            | R.B. Onvena 73      |
| Virola sebifera Aubl.                                  | ARV    | F            | R.B. Oliveira 96    |
| MYRTACEAE                                              | 711(1  | 1            | R.B. Onvena 70      |
| Eugenia hiemalis Cambess.                              | ARB    | F            | R.B. Oliveira 282   |
| Eugenia punicifolia (Kunth) DC.                        | ARB    | F            | R.B. Oliveira 80    |
| Myrcia guianensis (Aubl.) DC.                          | ARB    | F            | R.B. Oliveira 265   |
| Myrcia multiflora (Lam.) DC.                           | ARB    | F            | R.B. Oliveira 131   |
| Myrcia uberavensis O. Berg.                            | ARB    | F            | R.B. Oliveira 264   |
| NYCTAGINACEAE                                          | AKD    | 1            | R.B. Olivella 204   |
| Guapira noxia (Netto) Lundell                          | ARB    | F            | R.B. Oliveira 287   |
| OCHNACEAE                                              | AKD    | 1            | K.B. Olivella 267   |
| Ouratea castaneifolia (DC.) Engl.                      | ARV    | F            | R.B. Oliveira 210   |
|                                                        |        |              |                     |
| Ouratea spectabilis (Mart. ex Engl.) Engl. ORCHIDACEAE | ARV    | F            | R.B. Oliveira 186   |
|                                                        | EDI    |              | D.D. Olivaira 17    |
| Catasetum fimbriatum (E. Morren) Lindl. & Paxton       | EPI    | -<br>E       | R.B. Oliveira 17    |
| Epidendrum elongatum Jacq.                             | ERV    | F            | R.B. Oliveira 386   |
| Galeandra montana Barb. Rodr.                          | ERV    | F            | R.B. Oliveira 412   |
| Habenaria secunda Lindl.                               | ERV    | F            | R.B. Oliveira 58    |
| Poaceae                                                | TD:    | F            | D.D. Oli : 40.5     |
| Andropogon macrothrix Trin.                            | ERV    | F            | R.B. Oliveira 405   |

Tabela 1. Continuação...

| Família/Espécie                                 | Hábito | Microhabitat | Material testemunho |
|-------------------------------------------------|--------|--------------|---------------------|
| Aristida ekmaniana Henrard                      | ERV    | F            | R.B. Oliveira 109   |
| Digitaria sp.1                                  | ERV    | F            | R.B. Oliveira 450   |
| Digitaria sp.2                                  | ERV    | F            | R.B. Oliveira 464   |
| Echinolaena inflexa (Poir.) Chase               | ERV    | F            | R.B. Oliveira 143   |
| Eragrostis maypurensis Kunth Steud.             | ERV    | Is           | R.B. Oliveira 466   |
| Loudetiopsis chrysothrix (Nees) Conert          | ERV    | Is           | R.B. Oliveira 422   |
| Melinis minutiflora P. Beauv.                   | ERV    | F            | R.B. Oliveira 172   |
| Panicum maximilianii Schrad. ex Schult.         | ERV    | F            | R.B. Oliveira 400   |
| Panicum sp.                                     | ERV    | F            | R.B. Oliveira 136   |
| Paspalum chrysites (Steud.) Döll                | ERV    | F            | R.B. Oliveira 455   |
| Sporobolus indicus (L.) R. Br. var. indicus     | ERV    | F            | R.B. Oliveira 467   |
| PODOSTEMACEAE                                   |        |              |                     |
| Indeterminada                                   | SAP    | Is           | R.B. Oliveira 483   |
| POLYGALACEAE                                    |        |              |                     |
| Bredemeyera floribunda Willd.                   | LIA    | F            | R.B. Oliveira 472   |
| Securidaca rivinifolia A.StHil.                 | LIA    | F            | R.B. Oliveira 197   |
| PORTULACACEAE                                   |        |              |                     |
| Portulaca striata Poelln.                       | ERV    | Is           | R.B. Oliveira 404   |
| RUBIACEAE                                       |        |              |                     |
| Alibertia sessilis (Vell.) K.Schum.             | ARB    | F            | R.B. Oliveira 371   |
| Amaioua guianensis Aubl.                        | ARV    | F            | R.B. Oliveira 253   |
| Borreria centranthoides Cham. & Schltdl.        | ERV    | F            | R.B. Oliveira 157   |
| Borreria latifolia (Aubl.) K. Schum.            | ERV    | F            | R.B. Oliveira 59    |
| Borreria poaya (A. StHil.) DC.                  | ERV    | F            | R.B. Oliveira 379   |
| Coccocypselum lanceolatum (Ruiz & Pav.) Pers.   | ERV    | F            | R.B. Oliveira 166   |
| Diodia schumannii Standl. ex Bacigalupo         | ERV    | F            | R.B. Oliveira 61    |
| Galianthe grandifolia E.L. Cabral               | SUB    | F            | R.B. Oliveira 101   |
| Palicourea rigida Kunth                         | ARB    | F            | R.B. Oliveira 14    |
| Tocoyena brasiliensis Mart.                     | ARB    | F            | R.B. Oliveira 459   |
| Tocoyena formosa (Cham. & Schltdl.) K. Schum.   | ARV    | F            | R.B. Oliveira 378   |
| SANTALACEAE                                     | AKV    | 1            | R.D. Onvena 376     |
| Phoradendron crassifolium (Pohl ex DC.) Eichler | HEM    |              | R.B. Oliveira 355   |
| SAPINDACEAE                                     | TILIVI | -            | K.B. Olivella 333   |
| Serjania reticulata Cambess.                    | LIA    | F            | R.B. Oliveira 72    |
| SIPARUNACEAE                                    | LIA    | 1            | K.B. Olivella 72    |
| Siparuna guianensis Aubl.                       | ARV    | F            | R.B. Oliveira 361   |
| SMILACACEAE                                     | AKV    | Г            | K.B. Olivella 301   |
|                                                 | LIA    | F            | R.B. Oliveira 53    |
| Smilax polyantha Griseb. SOLANACEAE             | LIA    | Г            | K.B. Olivella 33    |
| SOLANACEAE Schwenckia americana L.              | EDV    | D            | R.B. Oliveira 460   |
| VELLOZIACEAE                                    | ERV    | R            | K.B. Olivelra 400   |
|                                                 | EDV    | D            | D.D. Olii 220       |
| Barbacenia tomentosa Mart.                      | ERV    | R            | R.B. Oliveira 339   |
| Vellozia tubiflora (A.Rich.) Kunth              | ERV    | R            | R.B. Oliveira 393   |
| VOCHYSIACEAE                                    | A DV   | Т.           | D D OI: : 240       |
| Qualea cordata (Mart.) Spreng.                  | ARV    | F            | R.B. Oliveira 349   |
| Qualea multiflora Mart.                         | ARV    | F            | R.B. Oliveira 382   |
| Vochysia cinnamomea Pohl                        | ARB    | F            | R.B. Oliveira 480   |
| XYRIDACEAE                                      |        | _            |                     |
| Xyris asperula Mart.                            | ERV    | Is           | R.B. Oliveira 484   |
| Xyris savanensis Miq.                           | ERV    | Is           | R.B. Oliveira 120   |

Tabela 1. Continuação...

| Família/Espécie                           | Hábito | Microhabitat | Material<br>testemunho |
|-------------------------------------------|--------|--------------|------------------------|
| Xyris seubertii Nilsson                   | ERV    | Is           | R.B. Oliveira 39       |
| ADIANTACEAE                               |        |              |                        |
| Adiantum subcordatum Sw.                  | ERV    | F            | R.B. Oliveira 138      |
| GLEICHENIACEAE                            |        |              |                        |
| Dicranopteris linearis (Burm. f.) Underw. | ERV    | P            | R.B. Oliveira 310      |
| PTERIDACEAE                               |        |              |                        |
| Doryopteris ornithopus (Mett.) J. Sm.     | ERV    | R            | R.B. Oliveira 398      |
| SCHIZAEACEAE                              |        |              |                        |
| Anemia sp.                                | ERV    | R            | R.B. Oliveira 83       |
| FAMÍLIA INDETERMINADA                     |        |              |                        |
| Indeterminada                             | ERV    | F            | R.B. Oliveira 426      |
| Indeterminada                             | ERV    | F            | R.B. Oliveira 397      |

destacada (19%). Esse tipo de estratificação é semelhante a de áreas de cerrado rupestre onde, embora haja o predomínio do estrato herbáceo-arbustivo, a presença de árvores é bastante significativa (Ribeiro & Walter 1998).

A grande maioria das espécies (78,3%) cresce nas frestas que se abrem entre as rochas. Essas espécies pertencem principalmente às famílias Fabaceae, Melastomataceae, Myrtaceae e Rubiaceae. Em geral, são arbustos e árvores comuns na área de cerrado adjacente. Cerca de 11,5% das espécies coletadas ocupam as ilhas de solo. Nestas, são encontradas plantas de porte herbáceo pertencentes principalmente às famílias Eriocaulaceae, Poaceae e Xyridaceae. As rochas abrigam 4,5% das espécies, sendo ocupadas principalmente por *Vellozia tubiflora* (A.Rich.) Kunth e *Pilosocereus machrisii* (E.Y.Dawson) Backeb. Os paredões comportam 2% das espécies coletadas, sendo colonizados quase que exclusivamente por *Sinningia araneosa* Chautems e *Pitcairnia flammea* Lindl.

Vellozia tubiflora se destaca na paisagem por formar um extenso tapete de vegetação, sendo a espécie com o maior número de indivíduos na área estudada (Figura 4). Essa espécie coloniza as rochas sem nenhum vestígio de solo. Esse padrão é semelhante ao que ocorre em muitas áreas de afloramentos rochosos, como citam Meirelles et al. (1999). Do mesmo modo como ocorre em outras áreas, essa espécie está confinada aos afloramentos rochosos e não se estabelece nas áreas vizinhas. Porembski & Barthlott (2000) citam que a família Velloziaceae tem representantes característicos em afloramentos rochosos que ocorrem na África, na Bolívia, na Venezuela e no Brasil, representando uma ligação biogeográfica entre essas regiões.

Representantes das famílias Bromeliaceae, Cactaceae e Orchidaceae também mostram grande habilidade em colonizar superfícies nuas de rochas, sendo, muitos deles, importantes espécies pioneiras nos afloramentos rochosos (Meirelles et al. 1999). Outras espécies visivelmente abundantes são: Ditassa acerosa Mart., Pitcairnia flammea Lindl., Pilosocereus machrisii (E.Y.Dawson) Backeb., Cyperus congestus Vahl, Sinningia araneosa Chautems, Loudetiopsis chrysothrix (Nees) Conert, Xyris seubertii Nilsson e algumas melastomatáceas como Leandra lacunosa Cogn., Marcetia taxifolia (A.St.-Hil.) DC. e Miconia albicans (Sw.) Triana. Juntas, essas espécies somam 6% das espécies coletadas.

A área de estudo apresentou várias características edáficas similares a outras áreas de afloramentos rochosos. O solo coletado apresentou-se visivelmente arenoso e de coloração cinza. A cor acinzentada do solo dá indícios de matéria orgânica mal decomposta sobre um ambiente de oxirredução (Reatto et al. 1998). Tais indícios são com-



**Figura 4.** Vista parcial da área de afloramentos rochosos do segundo platô do Morro do Forno, Altinópolis, São Paulo, mostrando o grande número de indivíduos de *Vellozia tubiflora* (A.Rich.) H.B.K.

**Figure 4.** Partial view of the rock outcrop of the second plateaus of the Morro do Forno, Altinópolis, São Paulo, it is showing the great number of the *Vellozia tubiflora* (A.Rich.) H.B.K. individuals.

provados pela baixa quantidade de matéria orgânica (26,67 g.dm<sup>-3</sup>) e pela grande quantidade de ferro (145 mg.dm<sup>-3</sup>) encontrada no solo da área de estudo. O resultado da análise física revelou um solo rico em areia (composto de 61% de areia fina) e pobre em silte e argila (21%). As análises químicas revelaram valores baixos para a maioria dos macros e micronutrientes (B 0,2 mg.dm<sup>-3</sup>, Cu 0,3 mg.dm<sup>-3</sup>, K 0,37 mg.dm<sup>-3</sup>, Mg 1,0 mg.dm<sup>-3</sup> e Zn 0,6 mg.dm<sup>-3</sup>). O solo apresentou acidez muito alta (pH 4,3), moderada toxidez por alumínio (9,5 mg.dm<sup>-3</sup>) e baixa saturação por bases (10%), caracterizando um solo distrófico, conforme discutem Reatto et al. (1998).

A distribuição das espécies em microhabitats parece estar condicionada pelo grau de decomposição do substrato e pela declividade, a exemplo de outras áreas de afloramentos rochosos conforme descrevem Ibisch et al. (1995), Giulietti et al. (1997), Porembiski et al. (1998) e Parmentier (2003). Neste estudo, o microhabitat rocha pode ser comparado a "monocotyledonous mats" descrito por Porembiski et al. (1996), enquanto os microhabitats fresta e ilha de solo podem ser comparados aos microhabitats de mesmo nome descritos por Conceição & Pirani (2005).

Vários dos táxons citados por Giulietti et al. (1997) como característicos dos campos rupestres ocorrem nos afloramentos rochosos do Morro do Forno. São eles: Paepalanthus e Syngonanthus (Eriocaulaceae), Cambessedesia e Marcetia (Melastomataceae), Barbacenia e Vellozia (Velloziaceae) e Xvris (Xvridaceae). Ocorre também, a "pteridófita" Dicranopteris linearis (Burm. f.) Underw., citada por Mendonça et al. (1998) como espécie de ocorrência nos campos rupestres. Algumas espécies são citadas na literatura como espécies de ocorrência comum, embora não exclusiva, nos campos rupestres e cerrados rupestres. Dentre essas podem ser citadas: Gomphrena prostrata Desf., Schefflera vinosa (Cham. & Schltdl.) Frodin & Fiaschi, Ditassa acerosa Mart., Ditassa retusa Mart., Hemipogon luteus E. Fourn., Distictella elongata (Vahl) Urb., Davilla rugosa Poir., Paepalanthus polyanthus (Bong.) Kunth, Paepalanthus tortilis (Bong.) Koern., Syngonanthus gracilis (Bong.) Ruhland, Syngonanthus nivius (Bong.) Ruhland, Periandra mediterranea (Vell.) Taub., Stryphnodendron rotundifolium Mart., Banisteriopsis stellaris (Griseb.) B. Gates, Cambessedesia hilariana (Kunth) DC., Leandra lacunosa Cogn., Marcetia taxifolia (A.St.-Hil.) DC., Loudetiopsis chrysothrix (Nees) Conert, Xyris asperula Mart., Xyris savanensis Miq. e Xyris sebertii Nilsson.

Muitas das espécies coletadas apresentam ampla distribuição geográfica, ocupando vários tipos de ambientes de mata e cerrado. Dentro dessa abordagem, merecem destaque: Tapirira guianensis Aubl., Epiphyllum phyllanthus (L.) Haw., Hirtella gracilipes (Hook f.) Prance, Pera glabrata (Schott) Poepp. ex Baill., Siparuna guianensis Aubl., Eragrostis maypurensis Kunth Steud, Sporobolus indicus (L.) R. Br., muitas delas com ocorrência desde a América Central até vários países da América do Sul (Pirani 1987, Cordeiro 1992, Boechat et al. 2001, Longhi-Wagner 2001, Peixoto 2002, Assis 2003, Zappi & Taylor 2003). Em contrapartida, Sinnigia araneosa Chautems é de distribuição restrita aos afloramentos de arenito do estado de São Paulo (Chautems & Matusoka 2003). A família Melastomataceae pode ser tomada como um exemplo para ilustrar a distribuição geográfica das espécies que ocorrem sobre os afloramentos rochosos do Morro do Forno. Romero & Martins (2002) relatam que a flora de Melastomataceae pode ser dividida em dois grupos, sendo o primeiro formado pelos gêneros Cambessedesia, Chaetostoma, Lavoisiera, Marcetia, Microlicia, Trembleya e Svitramia, que concentra o maior número de espécies com distribuição restrita e muitas como componente das floras dos campos rupestres e o segundo formado por Leandra, Miconia, Ossaea e Tibouchina, cujas espécies apresentam ampla distribuição, sendo mais comuns em áreas de cerrado e florestas. No Morro do Forno foram encontrados representantes dos dois grupos, espécies de Cambessedesia e Marcetia (primeiro grupo), e de Leandra, Miconia e Tibouchina (segundo grupo), demonstrando que no Morro do Forno há tanto elementos típicos de afloramentos rochosos (distribuição restrita), quanto de ocorrência em várias fisionomias vegetacionais (distribuição ampla).

Algumas espécies coletadas constam na Lista Oficial das Espécies da Flora do Estado de São Paulo Ameaçadas de Extinção (Resolução SMA 48-2004). *Andira vermifuga* Mart. ex Benth., *Portulaca striata* Poelln. e *Sinningia araneosa* Chautems são consideradas espécies vulneráveis, enquanto *Pilosocereus machrisii* (E.Y.Dawson) Backeb. é considerada em perigo de extinção.

Troppmair & Tavares (1985) consideram o Morro do Forno como testemunho do paleoclima mais frio e seco que ocorreu no passado. A flora que ocupa os afloramentos rochosos do Morro do Forno seria, na verdade, o resultado de sucessivas expansões e retrações da vegetação xérica da América do Sul causadas por ciclos paleoclimáticos durante os últimos 36.000 anos, reforçando a importância de estudos na área.

Devido as suas peculiaridades ecológicas, distribuição disjunta formando ilhas continentais, alta diversidade e endemismos, os afloramentos rochosos constituem excelentes fontes de estudos ecológicos, evolutivos, biogeográficos e, em especial, estudos comparativos de diversidade florística. Soma-se, ainda, o fato de que, devido à baixa utilidade dessas áreas para a agricultura e urbanização, os afloramentos rochosos formam o último refúgio de floras altamente ameaçadas, tais como o Cerrado e a Mata Atlântica. Sendo assim, estudos da vegetação dos afloramentos rochosos em áreas como o Morro do Forno são de grande relevância científica e importantes na manutenção e na preservação de muitas espécies vegetais.

# Agradecimentos

Agradecemos à CAPES pela bolsa concedida à primeira autora e aos especialistas que contribuíram na identificação das espécies de Asteraceae, Prof. Dr. Jimi Naoki Nakajima; Melastomataceae, Profa. Dra. Rosana Romero, Bromeliaceae e Xyridaceae, Profa. Dra. Maria das Graças Lapa Wanderley; Malpighiaceae, Profa. Dra. Maria Candida Henrique Mamede e Rubiaceae, Profa. Dra. Sigrid Luiza Jung Mendaçolli.

### Referências Bibliográficas

- ANDRADE, P.M, GONTIJO, T.A. & GRANDI, T.M.S. 1986. Composição florística e aspectos estruturais de uma área de campo rupestre do Morro do Chapéu, Nova Lima, Minas Gerais. Rev. Bras. Bot. 9:13-21.
- APGII. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. J. Linn. Soc. Lond. Bot. 141:399-436.
- ASSIS, M.C. 2003. Flora de Grão-Mogol, Minas Gerais: Chrysobalanaceae. Bol. Bot. Univ. São Paulo. 21(1):169-172.
- BOECHAT, S.C., GUGLIERI, A. & LONGHI-WAGNER, H.M. 2001. Tribo Eragrostidae. In Flora Fanerogâmica do Estado de São Paulo (M.G.L. Wanderley, G.J. Shepherd & A.M. Giulietti, coords.). v.1. FAPESP, HUCITEC, São Paulo. p.61-84.
- CHAUTEMS, A. & MATSUOKA, C.Y.K. 2003. Gesneriaceae. In Flora Fanerogâmica do Estado de São Paulo (M.G.L. Wanderley, G.L. Shepherd, A.M. Giulietti & T.S. Melhen, eds.). v.3. Instituto de Botânica, FAPESP, São Paulo. p.75-104
- CONCEIÇÃO, A. A. & GIULIETTI, A. M. 2002. Composição florística e aspectos estruturais de campo rupestre em dois platôs do Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Hoehnea. 29(1):37-48.
- CONCEIÇÃO, A.A. & PIRANI, J.R. 2005. Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais. Bol. Bot. Univ. São Paulo. 23(1):85-111.
- CORDEIRO, I. 1992. Flora da Serra do Cipó, Minas Gerais: Euphorbiaceae. Bol. Bot. Univ. São Paulo. 13:169-217.
- GIULIETTI, A.M., MENEZES, N.L., PIRANI, J.R., MEGURO, M. & WANDERLEY, M.G.L. 1987. Flora da Serra do Cipó, Minas Gerais: caracterização e lista de espécies. Bol. Bot. Univ. São Paulo. 9:1-151.
- GIULIETTI, A.M. & PIRANI, J.R. 1988. Patterns of geographic distribution of some plant species from Espinhaço Range, Minas Gerais and Bahia, Brazil. In Proceedings of a workshop on neotropical distribution patterns (P.E. Vanzolini, & W.R. Heyer, eds.) Academia Brasileira de Ciências, Rio de Janeiro. p.39-69.
- GIULIETTI, A.M., PIRANI, J.R. & HARLEY, R.M. 1997. Espinhaço Range Region, Eastern Brazil. In Centres of plant diversity. A guide and strategy for their conservation. (S.D. Davis, V.H. Heywood, O Herrera-Macbryde, J. Villa-Lobos & A.C Hamilton, eds.). v.3. The Americas, IUCN Publication, Cambridge. p.397-404.
- GIULIETTI, A.M., HARLEY, R.M., QUEIROZ, L.P., WANDERLEY, M.G.L. & PIRANI, J.R. 2000. Caracterização e endemismos nos campos rupestres da Cadeia do Espinhaço. In Tópicos atuais em botânica (T.B. Calvacanti & B.M. T. Walter, eds.). Sociedade Botânica do Brasil, Embrapa, Brasília. p.311-318.

- GRÖGER, A. & BARTHLOTT, W. 1996. Biogeography and diversity of the inselberg (Laja) vegetation of southern Venezuela. Biodivers. Lett. 3:165-179.
- GUEDES, L. M. L. S. & ORGE, M. D. R. 1998. Checklist das espécies vasculares do Morro do Pai Inácio (Palmeiras) e Serra da Chapadinha (Lençóis), Chapada Diamantina, Bahia, Brasil. UFBA, Salvador p.1-67.
- HARLEY, R.M. 1995. Introduction. In Flora of Pico das Almas, Chapada Diamantina - Bahia, Brazil (B.L. Stannard, ed.). Royal Botanic Gardens, Kew, Richmond. p.1-45.
- HARLEY, R.M. & SIMMONS, N.A. 1986. Florula of Mucugê, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew, Richmond.
- IBISCH, P.L., RAUER, G., RUDOLPH, D. & BARTHLOTT, W. 1995. Floristic, biogeographical, and vegetational aspects of Pre-cambrian rock outcrops (inselbergs) in eastern Bolivia. Flora. 190:299-314.
- JUDD, W.S., CAMPBELL, C.S. & STEVENS, P.F. 1999. Plant Systematics: a phylogenetic approach. Sinuar Associates, Sunderland.
- KÖEPPEN, W. 1948. Climatologia. Ed. Fondo de Cultura, México.
- LONGHI-WAGNER, H.M. 2001. Tribo Andropogoneae. In Poaceae (M.G.L. Wanderley, G.J. Shepherd & A.M. Giulietti, coords.). Flora Fanerogâmica do Estado de São Paulo. v.1. FAPESP/HUCITEC, São Paulo. p.88-118.
- MARES, M.A. 1997. The geobiological interface: granitic outcrops as a selective force in mamalian evolution. JR Soc. W. Austr. 80:131-139.
- MEIRELES, S.T., PIVELLO, V.R. & JOLY, C.A. 1999. The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. Environ. Conserv. 26(1):10-20.
- MELLO-SILVA, R. 1995. Aspectos taxonômicos, biogeográficos, morfológicos e biológicos das Velloziaceae de Grão-Mogol, Minas gerais, Brasil. Bol. Bot. Univ. São Paulo. 14:49-79.
- MENDONÇA, R.C, FELFILI, J.M., WALTER, B.M.T., SILVA-JÚNIOR, M.C., REZENDE, A.V., FILGUEIRAS, T.S. & NOGUEIRA, P.E. 1998. Flora Vascular do Cerrado. In Cerrado: ambiente e flora (S.M Sano & S.P. Almeida, eds.). EMBRAPA, Planaltina. p.290-556.
- MUNHOZ, C.B.R. & PROENÇA, C.E.B. 1998. Composição florística de Alto Paraíso de Goiás na Chapada dos Veadeiros. Bol. Herb. Ezechias Paulo Heringer. 3:102-150.
- NIMER, E. 1977. Geografia do Brasil Região Sudeste. v.3. IBGE, Rio de Janeiro.
- OLIVEIRA-FILHO, A.T. & MARTINS, F.R. 1986. Distribuição, caracterização e composição florística das formações vegetais da região de Salgadeira na Chapada dos Guimarães (MT). Rev. Bras. Bot. 9(2):207-223.
- PARMENTIER, I. 2003. Study of the vegetation composition in three inselbergs from continental equatorial guinea (western central Africa): effects of site, soil factors and position relative to forest fringe. Belg. J. Bot. 136 (1):63-72.

- PEIXOTO, A.L. 2002. Monimiaceae. In: Flora Fanerogâmica do Estado de São Paulo (M.G.L. Wanderley, G.J. Shepherd & A.M. Giulietti, coords.). v.2. Instituto de Botânica/FAPESP, São Paulo. p. 189-207.
- PETRI, S. & FÚLFARO, V.J. 1988. Geologia do Brasil. EDUSP, São Paulo.
- PIRANI, J.R. 1987. Flora da Serra do Cipó, Minas Gerais: Anacardiaceae. Bol. Bot. Univ. São Paulo. 9:199-209.
- POREMBSKI, S., SZARZYNSKI, J., MUND, J.P. & BARTHLOTT, W. 1996. Biodiversity and Vegetation of Small Sized Inselbergs in a West African Rain Forest (Tai, Ivory Coast). J. Biogeogr. 23(1):47-55.
- POREMBSKI, S., MARTINELLI, G., OHLEMÜLLER, R. & BARTHLOTT, W. 1998. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers. Distrib. 4:107-119.
- POREMBSKI, S. & BARTHLOTT, W. 2000. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol. 151:19-28.
- REATTO, A., CORREIA, J.R. & SPERA, S.T. 1998. Solos do bioma Cerrado: aspectos pedológicos. In Cerrado: ambiente e flora (S.M. Sano & S.P. Almeida, eds.). EMBRAPA, Planaltina. p.47-86.
- RIBEIRO, J.F. & WALTER, B.M.T. 1998. Fitofisionomias do bioma Cerrado. In Cerrado: ambiente e flora (S.M Sano & S.P. Almeida, eds.). EMBRAPA, Planaltina. p.89-165.
- ROMERO, R. & NAKAJIMA, J.N. 1999. Espécies endêmicas do Parque Nacional da Serra da Canastra, Minas Gerais. Rev. Bras. Bot. 25(1):19-24.
- ROMERO, R. 2002. Diversidade da flora dos campos rupestres de Goiás, sudoeste e sul de Minas Gerais. In Biodiversidade, conservação e uso sustentável da flora do Brasil (E.L. Araújo; A.N Moura.; E.V.S.B. Sampaio, L.M.S. Gestinari & J.M.T Carneiro, eds.). Universidade Federal de Pernambuco, Sociedade Botânica do Brasil, Seção Regional do Brasil, Recife. p.81-95.
- ROMERO, R. & MARTINS, A. 2002. Melastomataceae do Parque Nacional da Serra da Canastra, Minas Gerias, Brasil. Rev. Bras. Bot. 25(1):19-24.
- SCARANO, F.R. 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the brazilian atlantic rainforest. Ann. Bot. 90:1-8.
- STANNARD, B.L. 1995. Flora of Pico das Almas, Chapada Diamantina, Bahia Brazil. Royal Botanic Gardens, Kew, Richmond.
- TROPPMAIR, H. & TAVARES, A.C. 1985. Observações morfológicas e biogeográficas na região espeleológica de Altinópolis. Bol. Geogr. Teor. 15(29-30):329-336.
- ZAPPI, D.C. & TAYLOR, N.P. 2003. Flora de Grão-Mogol, Minas Gerais: Cactaceae. Bol. Bot. Univ. São Paulo. 21(1):147-154.