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Abstract: This review aims to discuss the main factors involved in the development of early 
antral follicles until gonadotropin dependence. This follicular phase is characterized by intense 
proliferation of granulosa cells, formation of a fluid-filled cavity, morphological differentiation 
of cumulus cells, mural granulosa cells and recruitment of theca cells. The interaction 
between oocyte, granulosa and theca cells is crucial for follicular growth and hormone 
production. Growth factors produced by the oocyte, such as growth and differentiation 
factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15), regulate granulosa cell 
proliferation and differentiation and antral cavity development, as well as stimulate the 
production of follicle-stimulating hormone (FSH) receptors in granulosa cells. In response to 
FSH, granulosa cells secrete C-type natriuretic peptide (CNP), which acts through its receptor 
to increase cyclic guanosine monophosphate (cGMP) production and consequently follicular 
development. Granulosa cells also produce insulin-like growth factor-1 (IGF-1) and increase 
aromatase enzyme activity, which results in greater sensitivity to gonadotropins and follicular 
steroidogenesis. The absence of IGF-1 signaling causes cessation of follicular growth at 
the early antral stage. Many other local factors are involved in the regulation of follicular 
development. Therefore, this review brings relevant data for a better understanding of the 
mechanisms involved in the control of early antral follicle growth, emphasizing the role of 
endocrine and paracrine factors, the oocyte-granulosa cell interaction and the processes of 
follicular atresia. The challenges for the establishment of efficient culture systems for in vitro 
growth of early antral follicles are also discussed.
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Resumo: Esta revisão tem como objetivo discutir os principais fatores envolvidos no 
desenvolvimento de folículos antrais iniciais até a dependência de gonadotrofinas. Essa fase 
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folicular é caracterizada por intensa proliferação de células da granulosa, formação de uma 
cavidade preenchida por líquido, diferenciação morfológica das células do cumulus, células 
da granulosa murais e recrutamento de células da teca. A interação entre oócito, células 
da granulosa e da teca é determinante para o crescimento folicular e produção hormonal. 
Fatores de crescimento produzidos pelo oócito, fator de crescimento e diferenciação-9 (GDF-9) 
e proteína morfogenética óssea-15 (BMP-15), regulam a proliferação e diferenciação de células 
da granulosa, e o desenvolvimento da cavidade antral, bem como estimulam a produção de 
receptores do hormônio folículo estimulante (FSH) nas células da granulosa. Em resposta ao 
FSH, as células da granulosa secretam o peptídeo natriurético tipo C (CNP), que atua através 
de seu receptor para aumentar a produção de monofosfato de guanosina cíclico (GMPc) e 
consequentemente o desenvolvimento folicular. As células da granulosa também produzem 
o fator de crescimento semelhante à insulina 1 (IGF-1) e aumentam a atividade da enzima 
aromatase, o que resulta em maior sensibilidade às gonadotrofinas e esteroidogênese folicular. 
A ausência de sinalização do IGF-1 causa cessação do crescimento folicular no início do estágio 
antral. Muitos outros fatores locais estão envolvidos na regulação do desenvolvimento folicular. 
Por tanto essa revisão traz dados relevantes para uma melhor compreensão dos mecanismos 
envolvidos no controle do crescimento de folículos antrais iniciais, enfatizando o papel dos 
fatores endócrinos e parácrinos, a interação oócito-células da granulosa e os processos de 
atresia folicular. Os desafios para o estabelecimento de sistemas de cultivo eficientes para o 
crescimento in vitro de folículos antrais iniciais também são discutidos.

Palavras-chave: Oócito; células da granulosa; células da teca; gonadotrofinas; células do 
cumulus; foliculogênese
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1. Introduction
Oocyte developmental competence refers to the ability of a female gamete to mature, to 

be fertilized, and to support embryonic development until the blastocyst stage(1). According 
to Dode et al.(2), this competence is acquired gradually during preantral and early antral 
follicular growth. To reinforce this information, oocytes from 3.0 mm antral follicles are able to 
complete nuclear maturation in vitro, while those from smaller follicles (1.0 and 2.0 mm) have 
reduced competence(3-4). This non-competence of oocytes from small antral follicles is due 
to the reduced expression of genes that activate signaling pathways to increase the oocyte’s 
ability to respond to the increase in gonadotropins(5). Responsiveness to gonadotropins 
enables the follicles to grow until selection and dominance(6-7).

In the course of follicular development, proliferation and morphological differentiation 
of granulosa cells are of great importance to prepare the follicle to respond to gonadotropins 
and to create a favorable environment for oocyte development(8). Granulosa cells produce 
several autocrine and paracrine factors that may be involved in oocyte growth and antrum 
formation(9). Additionally, oocyte-derived factors stimulate the expression of follicle-stimulating 
hormone receptors (FSHR) in granulosa cells, enabling them to become responsive to 
gonadotropins(10). The follicle-stimulating hormone (FSH) induces proliferation and viability of 
the oocyte-cumulus-granulosa complex and may also induce granulosa cell differentiation(11). 
Furthermore, oocyte-derived factors also stimulate antral cavity formation by increasing 
the expression proteoglycans, as a result of interaction with FSH(9). Thus, understanding 
the endocrine, paracrine and autocrine mechanisms that control the interaction between 
follicular cells and the oocyte during early antral follicles favors the development of strategies 
to promote their development in vitro(12).

The present review provides an overview of the main factors that control the development 
of early antral follicles up to gonadotropin dependence, i.e., regulation of granulosa cell 
proliferation, steroidogenesis, atresia, interaction between oocyte and granulosa cells, as 
well as strategies to promote the development of early antral follicles in vitro.

2. Endocrine control of early antral follicle development
Follicle development from the preantral to the early antral stage is mainly controlled by 

intraovarian regulators, but it can be stimulated by FSH. The specific receptors for FSH are 
expressed in granulosa cells of secondary and early antral follicles(13). When secondary follicles 
are formed, granulosa cells express FSHR, and theca cells express the luteinizing hormone 
receptor (LHR)(14). In domestic and human species, antrum formation is observed when the 
follicles have around 0.2 mm(15) and become dependent on gonadotropin when they reach 
3.0 mm in cow(16), 4.0 mm in sheep(17), 3.0 mm in goat(18) and 5.0 mm in human(19). Follicular 
growth and maturation beyond this stage, which includes follicle recruitment, selection, 
dominance, and ovulation, is gonadotropin-dependent(20-21). Acquisition of FSH dependence 
during this interval of growth is crucial to determining follicular fate, i.e., growth or atresia. 
The C-type natriuretic peptide (CNP) is secreted by granulosa cells of secondary and antral 
follicles in response to FSH stimulation. CNP acts through its receptor (NPRB) expressed in 
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granulosa cells of secondary follicles and increases Guanosine 3’,5’-cyclic monophosphate 
(cGMP) production to stimulate follicle development(33). Gene expression analyses indicated 
increases in transcripts for CNP receptors (NPP and NPRB) during early folliculogenesis in 
mice, in association with increases in ovarian CNP peptides(33) (Figure 1). 

Growth and differentiation factor-9 (GDF-9) and bone morphogenetic protein 15 (BMP-
15), both secreted by the oocyte, promote proliferation of granulosa cells and the recruitment 
of theca cells, events that are required for the transition of follicles from the primary to the 
secondary stage(34). Factors produced by secondary follicles, including vascular endothelial 
growth factor (VEGF), transforming growth factor (TGF), insulin-like growth factor (IGF), 
fibroblast growth factor-2 and -7 (FGF-2 and FGF-7), BMPs and activin, are necessary for survival 
and further development. At the antral stage, locally synthesized peptides play a key role in 
the regulation of follicular development through endocrine and paracrine mechanisms(17, 35). 
Among these peptides, those of the IGF system, including IGF-1, IGF-2 and the IGF binding 
proteins (IGFBPs) and some members of the FGF family, such as FGF-2, FGF-7 (or KGF), FGF-8 
and FGF-10(35-36), appear to be critical for late-stage follicle development (Figure 1).

 Fushii et al.(22) recently showed that cumulus-oocyte complexes (COCs) cultured with FSH 
have the antral cavity formed one day earlier than those that do not receive this hormone, 
showing the importance of FSH in follicular development. Intraovarian regulators, IGF, activin, 
oocyte-derived factors, and gap junction membrane channel protein play a central role in the 
acquisition of FSH dependence at the early antral stage of follicle development(13). Theca-
derived androgens bind to androgen receptors (ARs) in granulosa cells(23), thereby inducing 
FSHR expression and follicle growth during the preantral-to-antral transition(14, 24, 25). The AR 
deficiency in the mice ovary induces granulosa cell apoptosis, arrests antral follicle growth 
and results in premature ovarian failure(26-28). Thus, androgens play an important role in the 
growth, survival and acquisition of FSH dependence in early antral follicles(13) (Figure 1).

Anti-Müllerian hormone (AMH) is a product of granulosa cells from small antral follicles 
onwards that has an inhibitory or retarding role in the development of antral follicles. The 
AMH reduces follicle sensitivity to FSH, decreasing the expression of FSHR. It inhibits cyclic 
FSH-dependent recruitment and appears to play a role in all gonadotropin-independent 
follicular growth. Despite having a regulatory relationship between androgens and AMH, it 
is not possible to guarantee that their effects are mediated by estradiol, via testosterone 
aromatization(29) (Figure 1).

Melatonin is found in the follicular fluid of human antral follicles and has important 
roles in the control of follicle development(30). Its receptors have previously been detected in 
granulosa cells of preantral and antral follicles(31). Regarding the effects of melatonin, Barros 
et al.(32) demonstrated that this hormone is associated with meiotic competence of oocytes 
from early antral follicles. Melatonin maintains follicular survival, stimulates antral cavity 
formation and subsequent follicular and oocyte growth, as well as increases glutathione and 
metabolically active mitochondria levels after in vitro culture of sheep secondary follicles(32).
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Figure 1. Factors that regulate the development of preantral follicles up to gonadotropin-depen-
dent stages.

3. Oocyte-granulosa cell interaction during early antral follicle development 
It is well known that during follicular development; members of the transforming growth 

factor beta (TGFβ) family and their receptors are involved in the control of oocyte growth 
and granulosa cell proliferation. Oocyte-derived TGFβ family members, such as GDF-9 and 
BMP-15, regulate granulosa cell proliferation and differentiation, as well as the development 
of the antral cavity(33-34). Additionally, recent studies indicate that these factors regulate the 
expression of mRNA for LHR in cumulus cells(35). Oocyte-derived GDF-9 promotes the growth 
of cumulus-oocyte (COCs), while BMP-15 induces the expression of choriogonadotropin 
receptor mRNA (LHCGR) in cumulus cells, and FSH receptor expression in follicles. Such factors 
contribute to follicular development and oocyte maturation(35-36). GDF-9 and BMP-15 bind to 
type II BMP receptor(37) and recruit type I activin-like kinase (ALK)5(38) and ALK6(39) to regulate 
downstream SMAD proteins in granulosa cells. Studies indicate that GDF-9 enhances growth 
and differentiation of preantral follicles in culture (40) and promotes theca cell androgen 
biosynthesis and proliferation(41). In addition to these factors, R-spondin2 protein is also an 
important paracrine factor that can promote granulosa cell proliferation(42). The FGF-2 and 
their respective receptors are also involved in early antral follicle development since(36, 43-

44) FGF-2 alone or in association with VEGF-A influence steroidogenesis and proliferation of 
buffalo granulosa cells, by regulating mRNA expression of cytochrome P450 19A1 (CYP19A1), 
proliferating cell nuclear antigen (PCNA), and Bcl-2 Associated X-protein (BAX)(44-45) (Figure 
2). Furthermore, Mattar et al.(46) reported that VEGF-A and FGF-2 promote the formation 
of endothelial cell networks during in vitro culture of theca cells. These structures support 
successive follicular development up to the preovulatory stage.

Granulosa cells play a role in the development of antral follicles by promoting the 
development of the oocyte-granulosa cell complex and providing adenosine triphosphate 
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(ATP) to the oocytes(48). Moreover, Yang et al.(48) demonstrated the influence of BPM-4, derived 
from theca cells, on steroidogenesis in early antral follicles. The CNP is also a stimulating 
factor for early antral follicles(30) (Figure 2). In association with the granulosa cells, the theca 
cells contribute to the synthesis of inhibin α; which is a hormone that inhibits the production 
of FSH(49). Yang et al.(48) demonstrated the influence of BPM-4, which comes from the theca 
cells, on steroidogenesis and initial antral follicles.

Figure 2. Oocyte-granulosa cell interactions during early antral follicle development.

4. Control of granulosa cell proliferation and estradiol production during 
early antral follicle development

In early antral follicles, granulosa cells are highly proliferative but susceptible to 
apoptosis. The factors secreted by the oocyte, like GDF-9 and BMP-15, regulate granulosa 
cell proliferation and survival(50-51). Furthermore, granulosa cell proliferation is dependent 
on cyclin D2 to activate cyclin-dependent kinase (CDK) family members CDK2, CDK4 and 
CDK6(52). In developing follicles, FSH stimulates granulosa cell proliferation and aromatization 
of androgens into estrogens. Estrogens also stimulate granulosa cell proliferation(53). An 
increase in estradiol is associated with an increase in the expression of genes for aromatase, 
3β-HSD and receptors for FSH and LH in granulosa cells (Figure 2)(54). 

Neuronal neuropeptide Y (NPY) is strongly present in granulosa cells, and the abundance 
of mRNA for NPY is higher in early antral follicles than in late antral follicles. In addition, 
NPY increases the proliferation of granulosa cells via NPY receptor Y5 (NPY5R) and mitogen-
activated protein kinase (MEK)(55). Baddela et al. (56) reported that, in granulosa cells, hypoxia-
inducible factor 1 (HIF1) transcriptionally regulates genes associated with steroidogenesis, 
such as steroidogenesis acute regulatory protein (StAR), 3B-hydroxysteroid dehydrogenase 
(HSD3B) and CYP19A1, and proliferation (CCND2 and PCNA). The onset of StAR mRNA 
expression occurs in early antral follicles of 1.0 mm in diameter(57). Furthermore, FSH and 
LH, together with intraovarian cytokines, induce the expression of steroidogenic enzymes in 
granulosa cells, including StAR, CYP11a1, 3βHSD and CYP19a1, as shown in Figure 3(58). The 
expression of mRNA for LHR is found in granulosa cells from follicles smaller than 5 mm(59). 

Follicular steroidogenic potential involves an extensive and highly coordinated series 
of developmental stages. During this process, after intense granulosa and theca cell 
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proliferation (up to 100-fold), they differentiate into specialized endocrine cells. Ovarian 
steroids are synthesized by the cooperation of these cells. Theca cells synthesize androgens 
through the enzymatic activity of cytochrome P450 17A1 (CYP17A1)(53). Follicles over 2 mm 
in diameter strongly expressed LH-R and CYP17A1 mRNAs in most thecal cells(55). Androgens 
are then converted to estrogens by aromatase (CYP19) produced by granulosa cells. 
Moreover, progesterone is produced by granulosa cells and used by theca cells to synthesize 
androgens(60). StAR, CYP11a1 and CYP19a1 are the key enzymes in the hormone synthesis 
process(61) (Figure 3).

Granulosa cells express estradiol receptors, contributing to follicular development(62). 
Autocrine and paracrine activities of estradiol in granulosa cells stimulate aromatase enzyme 
activity, increasing gonadotropin sensitivity and expression of IGF-1(59). In the ovary, IGF-I 
stimulates follicular steroidogenesis and increases estradiol production. The absence of 
IGF-I results in interruption of follicular growth in the preantral/early antral stage since these 
follicles do not respond to gonadotropin(60-61). In granulosa cells, the stimulatory effect of FSH 
on CYP19 and protein kinase B (AKT) depends on IGF-I and on the expression and activation of 
IGF-IR(61). Furthermore, FSH induces estradiol production via FSHR-cAMP-dependent signaling 
to induce transcription of the CYP19A1 gene(77). After follicle recruitment, gonadotropins 
gradually reduce granulosa cell proliferation and induce their differentiation to produce 
estradiol(68) (Figure 3).

Figure 3. Influence of FSH, LH estradiol and IGF-I on granulosa cells to induce proliferation and 
production of enzymes involved in steroidogenesis.

5. Follicle atresia during development from early antral follicles 
At birth, the ovaries contain thousands of follicles, but only a small portion develops up 

to ovulation, while the great majority (~99.9) are lost by atresia. Follicular atresia does not 
occur equally during follicular development, differing between preantral follicles and antral 
follicles(68). Spanel-Borowski et al.(69) reported two types of atretic patterns in ovarian follicles, 
namely type A, in which the oocyte degenerates while granulosa cells remain intact, and 
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type B, in which the granulosa cells show signs of extensive degeneration while the oocyte 
remains initially unaffected. Type A is the predominant form of atresia in preantral follicles(70), 
while in late antral follicles only type B is observed, with apoptosis of granulosa cells in 
the presence of a more or less intact oocyte being characteristic of atresia in large antral 
follicles(69). In early antral follicles, the first changes that indicate atresia occur in the oocyte, 
such as nuclear chromatin retraction and oocyte fragmentation, while changes are rarely 
found in the granulosa cells present in these follicles(70). 

When the paracrine or endocrine environment is not suitable to support oocyte growth 
and/or proliferation and differentiation of follicular cells, atresia can occur through necrosis, 
necroptosis, autophagy and apoptosis pathways(71) (Figure 4). The necrosis and necroptosis 
pathways have similar morphological features and are characterized by an increase in cell 
volume, permeabilization and rupture of the plasma membrane, which lead to cell death(71). 
Generally, necrosis is initiated by non-cellular mechanisms such as ischemia, deficiency 
in ATP levels and trauma, leading to irreversible cell damage(71). Necroptosis is initiated by 
tumor necrosis factor-α (TNFα) and operated through protein kinase-1 and 3, which interact 
with its receptors-interacting serine/threonine-protein kinase 1 and kinase 3, respectively, as 
well as by the domain-like protein of mixed lineage kinase (MLKL)(71). Zhou et al.(72) showed 
that the process of autophagy is involved with atresia in secondary and early antral follicles. 
Autophagy is an evolutionarily conserved form of intracellular process that involves damaged 
proteins and organelles for degradation and recycling (Figure 4).

It is believed that granulosa cell apoptosis in late antral follicles is triggered by insufficient 
FSH levels or reduced numbers of FSH receptors(73). The absence of LH and the decline of FSH 
circulation cause a decrease in the growth of subordinate follicles, ultimately resulting in 
atresia(74). FSH protects granulosa cells from oxidative damage and rescues granulosa cells 
from apoptosis. FSH is thought to rescue granulosa cells of antral follicles from apoptosis via 
activation of the phosphatidylinositol 3 kinase (PI3K)–AKT signal transduction pathway. The 
activation of the phosphoinositide 3-kinase (PI3K)/Akt, via binding of FSH to its receptor, leads 
to phosphorylation of the box O subfamily of forkhead transcription factors (FOXO), which 
influences, among other processes, the survival of granulosa cells(75). 

Figure 4. Mechanisms involved in early antral follicle atresia.
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 6. Strategies for in vitro development of early antral follicles
Several studies have investigated the relationship between follicular and oocyte 

size with the acquisition of oocyte developmental competence in vitro, and many studies 
have focused on the development of culture protocols that can support the development 
of oocytes from early antral follicles (Figure 5). Harada et al.(76) demonstrated, for the first 
time, that 90.0 to 99.0 µm oocytes from early bovine antral follicles (0.5 to 0.7 mm) can grow 
and acquire developmental competence in vitro in the presence of hypoxanthine and FSH. 
Likewise, Yamamoto et al.(77) demonstrated that, in addition to being able to grow and acquire 
developmental competence in vitro, oocytes (90.0 to 99.0 µm) from small bovine follicles were 
capable of producing offspring after undergoing maturation, fertilization and subsequent in 
vitro cultivation. 

When culturing isolated antral follicles with a diameter between 0.2 and 0.5 mm, it was 
observed that, like the COCs (0.4 and 0.7), the follicles can also grow in in vitro culture, and 
that the oocytes can achieve meiotic competence(78). In goat species, in addition to obtaining 
improved in vitro oocyte maturation, embryo production from oocytes from small antral 
follicles cultured in vitro was reported(79). Cadenas et al.(80) showed that early antral follicles 
from goats cultured in a medium containing insulin (10 ng/mL) associated with growth 
hormone (50 ng/mL) are capable of maintaining the growth and maturation of oocytes in vitro 
at levels similar to in life. Similarly, when observing the effect of stimulation of recombinant 
human FSH (hrFSH) on early goat antral follicles, hrFSH improved antral follicle development 
in a concentration-dependent manner(81). Lopes et al.(82) also demonstrated that early antral 
follicles isolated from goat ovarian stroma are able to grow and survive in vitro for a short 
period of time, after going through a vitrification process. Cordeiro et al.(83) have recently 
reported that the presence of N-acetyl-cysteine (NAC) in the medium culture of early antral 
follicles reduces the levels of reactive oxygen species (ROS) and maintains the integrity of 
oocytes during culture in cattle.

In vitro culture of COC and isolated follicles ensures bidirectional communication 
between oocytes and granulosa cells through transzonal projections (TZPs), which is crucial 
for the occurrence of molecular events necessary for follicle and oocyte development until 
ovulation. These events involve, in addition to chromosomal separation, characterizing 
nuclear maturation. Moreover, they involve the distribution of cytoplasmic organelles, the 
stock of mRNA, proteins and other factors that are essential for the oocyte to be able to 
resume meiosis and support fertilization and embryonic development(84). 

Some studies have already reported the birth of live calves from oocytes obtained from 
early antral follicles, but the viability and developmental competence of these oocytes in vitro 
can be improved(77, 85-86). Therefore, our research group has focused on the development of 
culture protocols that favor the acquisition of oocyte competence in vitro. Bezerra et al.(87) 
showed that follicular hemisections combined with cilostamide have a synergistic effect on 
the maintenance of oocytes in the germinal vesicle during in vitro culture. Barrozo et al.(88) 
showed that the presence of this NAC in the culture medium increased the percentage of 
meiotic resumption and the distribution of TZPs, as well as reduced ROS levels, indicating that 
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the inclusion of antioxidants is important to optimize the IVM systems. He et al.(89) suggested 
that the two-dimensional (2D) culture system is more suitable for the culture of oocytes from 
early antral follicles lasting up to four days, while in culture periods longer than four days, the 
three-dimensional (3D) system is more adequate.

Culture of isolated early antral follicles may also be a promising alternative for providing 
competent oocytes for use in in vitro maturation protocols(90), as this communication between 
oocytes and granulosa cells is maintained. However, the choice of follicle size is fundamental 
to the acquisition of competence in oocyte development. It has already been shown that 
oocytes from small antral follicles (1 and 2 mm) have significantly reduced competence 
compared to oocytes from larger antral follicles (>3 mm)(3-4). Bezerra et al.(90) showed that the 
levels of mRNAs for transcripts involved in the oocyte development process, such as histone 
with oocyte-specific ligand (H1FOO), GDF-9 and poly (a) specific ribonuclease (PARN), increase 
in oocytes when follicles grow from secondary to small, medium and large antral follicles.

Figure 5. Schematic representation of the major advances with in vitro culture of early antral follicles.

7. Conclusions
The development of early antral follicles up to gonadotropin dependence involves a 

wide range of processes, which can be decisive for follicular growth, steroidogenesis and 
acquisition of oocyte competence. The interplay between oocyte and follicle cells directly 
influences follicle and oocyte fate. In addition, the in vitro culture of early antral follicles 
opens new prospects for the use of their oocytes for in vitro fertilization and for a better 
understanding of the mechanisms involved in the control of early antral follicles.
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