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ABSTRACT: The ordinary least squares (OLS) can be affected by errors associated 
with heteroscedasticity and outliers, and extreme points can influence the regression 
parameters. Methods based on the median rather than on the mean and variance are more 
resistant to outliers and extreme points. These methods could be used to obtain regression 
parameter estimates that reflect more accurately the genuine relationship between the Y 
and X variables, leading to better identification of outliers and extreme points by comparing 
the slopes and intercepts of both methods. The Theil-Sen (TS) regression computes all 
possible pairwise slopes and determines the median of slopes as the regression slope. 
Here, we illustrated the potential use of TS and frequently used robust regression (RR) 
techniques to single linear regression using synthetic datasets and a practical problem in 
animal science. Three synthetic datasets were created assuming the normal distribution 
of Y and X values: one was free of outliers, while the other two had one or two clusters 
of outliers but the same X values. The TS, OLS, and RR had nearly identical regression 
parameter estimates for the dataset without synthetic outliers. However, the intercept and 
slope estimates by the OLS method differed considerably from the TS and RR methods 
when one or two clusters of outliers were included. The TS approach could be used to 
indirectly determine the presence of outliers or extreme points by comparing the 95 % 
confidence interval of the TS and OLS parameter estimates.
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Introduction

The ordinary least squares (OLS) is the standard 
method of regression analyses, but the technique is 
subject to errors associated to heteroscedasticity and 
the presence of outliers. Concerning outliers, even a 
single spurious point in either X or Y axes can markedly 
affect the slope and intercept estimates (Wilcox, 2021). 
After checking for the correctness of data entry, careful 
data evaluation for outliers becomes an essential 
preliminary step in the regression analyses and data 
analytics in general (Tedeschi, 2022).

Datasets with multiple X and Y values allow 
determining all possible two-point slopes. If these 
two-point slopes are weighted by the square distance 
between their X values, the weighted average equals 
the slope of the OLS regression method. The approach 
of computing all possible slopes was used to address 
the presence of outliers in regression data by Theil 
(1992) and Sen (1968). However, rather than calculating 
a weighted average, these scientists computed the 
median of the slopes. Given that the median is 
insensitive to extreme (i.e., influential) points, its use to 
fit linear regression was proposed by Wald (1940) with 
subsequent derivative works (Walters et al., 2006); 
however, the Theil-Sen (TS) approach possibly provides 
a more robust nonparametric method to estimate the 
slope.

Since its inception in the late 1970s by John W. 
Tukey (1977), robust estimation has percolated through 

many fields of science. However, agricultural sciences 
seem reluctant or unaware of its applications and 
benefits. Although various approaches exist (Zacharias 
et al., 1996), robust regressions (RR) have been 
generally neglected in the development and evaluation 
phases in the modeling field (Tedeschi, 2006). This is 
partly because one cannot be sure whether the achieved 
model adequacy is a result of the model logistics per 
se or the RR estimation process is changing parameter 
estimates, consequently making model predictions 
look better than reality.

Our objective was to illustrate the potential use 
of TS and another frequently used RR technique (e.g., 
M and MM estimators) when applied to a common 
analysis, the regression of observed on predicted values, 
to assess the fit of prediction equations. Although 
resilient to the effects of outliers, the TS approach is 
seldom used in animal science research. However, it 
could offer an alternative to OLS, mainly when data 
are influenced by outliers, either lightly or heavily 
affecting the estimation of the intercept and slope. We 
also briefly discuss the application of RR methods in 
animal science research.

Materials and Methods

All data calculations and statistical analyses were 
conducted with R 4.2.2 (R Core Team, 2019). No animals 
were used in this research; thus, Institutional Animal 
Care and Use Approval was unnecessary.
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Synthetic dataset analyses

Appendix 1 has the R code to generate the synthetic 
datasets. Synthetic datasets were created assuming the 
normal distribution and random number generation based 
on the Mersenne-Twister method with a seed of 12345. 
The independent (X) dataset was generated considering a 
sample size of 200, a mean of 5, and a standard deviation 
(SD) of 0.1 (Appendix 1). The error dataset was generated 
assuming a sample size of 200, a mean 0, and an SD of 
0.05 (Appendix 1). The dependent variable (Y) was the 
sum of X and the error (Y = X + error). These settings 
produced a Pearson correlation between Y and X of 0.915 
(p < 0.001), a slope of 1, and zero intercept.

Synthetic outliers – Synthetic outliers were created 
assuming the normal distribution and random number 
generation based on the Mersenne-Twister method with a 
seed of 12346. A pre-determined number of X values (i.e., 
10) were randomly selected from a specific X range, and 
random values obtained from a third normal distribution 
were added to the Y values to emulate outliers (Appendix 
1). This cluster of points (i.e., 10) had the same X values, 
but their Y values were increased (or decreased) depending 
on the mean used in the second normal distribution. 
For the one outlier cluster simulation, the X range was 
between 5.18 and 5.4 (Appendix 1), and the third normal 
distribution had a mean –0.8 and SD of 0.02 (Appendix 
1); thus, the adjusted Y values were decreased from the 
original values. For the two outlier cluster simulation, in 
addition to the cluster generated for the one outlier cluster 
simulation, the X range was between 4.8 and 4.9 (Appendix 
1), and the fourth normal distribution had a mean of 1 and 
SD of 0.02 (Appendix 1); thus, the adjusted Y values were 
increased from the original values.

Real dataset analyses

A comparison between OLS and TS regressions was 
conducted using the dataset gathered by Hales et al. 
(2022) to predict dietary concentrations (Mcal kg–1 of dry 
matter) of metabolizable energy (ME) from digestible 
energy (DE), commonly used in animal science research. 
Their dataset contained 134 observations from 34 papers 
published from 1975 to 2020 with bulls, steers, and 
heifers, using open-circuit respiration calorimetry systems 
obtained from respiration chambers or headboxes. The 
dietary concentrations of DE (1.84 to 3.88 Mcal kg–1), 
crude protein (7.88 % to 24.08 %), neutral detergent fiber 
(15.65 % to 68.81 %), ether extract (1.94 % to 8.71 %), 
and starch (0 % to 56.85 %) were either measured and 
reported by the studies or calculated from various sources 
as described by Galyean et al. (2016).

Theil-Sen and robust regressions

Theil-Sen regression – The original development of 
the TS approach was published by Theil (1950a, 1950b, 

1950c) and Sen (1968). The TS computes the slope (bTS) 
of the regression between Y on X as the median of the n 
– 1 slopes between two consecutive pairs of Y and X, as 
shown in Eq. [1]. Alternatively, the TS can be computed 
with all possible combinations of Y and X as shown 
in Eq. [2], following the repeated median approach 
developed by Siegel (1982), who included preceding 
and succeeding Y and X pairs. Regardless of the method 
used, Xj and Xi must be different to avoid division by 
zero. The first approach (Eq. [1]) results in n ´ (n + 1) / 
2 –1 data points, whereas the second approach (Eq. [2]) 
results on n × n data points. In our study, we adopted 
Eq. [1] to compute the slope and Eq. [3] to compute the 
intercept (aTS) of the TS regression. The TS parameter 
estimates were obtained with the mblm package version 
0.12.1 of R.
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The correlation and determination coefficients 
for the TS regression were computed using the known 
relationship between the correlation coefficient 
and slopes of Y regressed on X (Y dependent and 
X independent variables), and X regressed on Y (X 
dependent and Y independent variables) when using OLS 
statistics. The correlation coefficient (rYX) calculation is 
shown in Eq. [4], and the determination coefficient is 
rYX
2 . The slope of Y regressed on X gives the sign of the 

correlation. Thus, to compute the rYX and rYX
2  for the TS 

regression, we estimated the slopes (bYX and bXY) using 
Eq. [1], and applied them to Eq. [4].
       
r sign b b bYX YX XY YX= × ×( )       [4]

where: bXY is the slope of X regressed on Y and bYX is the 
slope of Y regressed on X.

Robust regression – The adoption of robust analysis 
and regression was partly slow because of complications 
and divergence in defining what robust meant, and 
many methods (i.e., 68) were devised (Andrews et 
al., 1972), resulting in confusion about which one 
to use. Many techniques and algorithms still exist, 
but the scientific community has gained much more 
information about them, and some have consolidated 
more towards the M-estimator classes of techniques 
(Wilcox, 2021). Several robust analyses and regression 
methods are available in commonly used statistical 
software packages; therefore their limited adoption 
is more related to a lack of information than how to 
apply them. Robust regression is a category of methods 
used to deal with outliers and extreme data points. 
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Robust regression methods characterize the location 
and scale of data points to ensure that changes in the 
data points caused by outliers have a relatively small 
effect on the regression parameters (Wilcox, 2021). 
Several RR approaches exist, namely least median 
squares, least trimmed squares, least trimmed absolute 
value, and many more location estimators that rely on 
different influence functions. Commonly used location 
estimators are the M-estimators with varying influence 
functions (e.g., Huber, Andrews, Hampel, and biweight, 
to list a few), R-estimators, S-estimators, and the MM-
estimator, among many others (Wilcox, 2021). The main 
difference among these location estimators regards their 
breakdown values. The breakdown value refers to the 
quantitative robustness of a method (i.e., how robust 
a method is to increasing contamination in the data). 
The greater the breakdown value, the more robust the 
method. The breakdown value of the TS estimator is 
approximately 0.293 (Dietz, 1989). The M-estimator is 
substantially more efficient than the OLS method as it 
can handle a few outliers (Wilcox, 1998). However, the 
M-estimator is not the most effective method compared 
to the MM-estimator. Although the MM-estimator 
struggles with contamination bias, it can have the 
highest breakdown value of 0.5 under normality and 
satisfactory efficiency for small samples compared with 
other robust estimators (Wilcox, 2021). Thus, we used 
the M- and MM-estimators for our comparisons and 
they were computed with the rlm function in the MASS 
package of R.

Comparison among methods – The methods (OLS, 
TS, and M-, and MM-estimators) were compared with 
500 synthetic datasets with two clusters of outliers 
described above (Appendix 1). Subsequently, the 
Pearson correlation of the 500 intercepts was estimated, 
and slopes between methods were obtained.

Statistical analyses

Confidence intervals and significance of intercepts 
and slopes – For the TS approach, the 95 % confidence 
interval (CI95) for the medians of the slopes and intercepts 
were computed using the Wilcoxon Rank Sum (WRS) 
test via the wilcox.test function of the stats package of 
R. In a preliminary analysis, the WRS CI95 values were 
similar to those estimated by the algorithm described 
by Conover (1999) that estimates the lower and upper 
ranks of the medians using the following equation: 
rank n q Z n q q= × ± × × × −0 05 1. ( ) , where n is the sample 
size, q is the quartile of interest (0.5 for median), and 
z0.05 is the z-critical value (i.e., 1.96). Wilcox (2021, Ch. 4) 
discussed other functions to compute CI95 for medians. 
For the OLS and RR, the t-test was used to calculate the 
CI95 and the p-value of the intercept and slope.

 
Outliers – The existence of outliers and influential 
points in the Y values was determined using the Cook’s 

Distance (CD) (Kutner et al., 2005), using the cooks.
distance function of stats Package of R, and the studentized 
residuals (Kutner et al., 2005), using the studres function 
of the MASS package of R. Points that had CD greater 
than four times the mean of CD were deemed influential 
points, and points that had studentized residues above 
3 and below -3 were considered outliers. Additionally, 
the Tukey’s boxplot (Tukey, 1977) was used to identify 
potential outliers (points outside of 1.5 times the 
interquartile range [IQR], i.e., the end of the whiskers).

Results and Discussion

Synthetic dataset analyses

Table 1 has the regression statistics, and Figures 1 
through 3 show the scatter points of Y and X values, 
with regression lines depicted for the various methods. 
Figure 4 shows their respective boxplots, depicting 
potential outliers.

Without synthetic outliers – A plot of the Y and X 
values of the synthetic dataset is shown in Figure 1. As 
shown in Table 1, the OLS regression had an intercept 
of –0.0802 (p(H0=0) = 0.617), a slope of 1.0168 (p(H0=1) 
= 0.599), r2 of 0.837, and mean square error (MSE) 
of 0.0023. The CD reported 11 values (shown in open 
circles in Figure 1); however, no potential outlier was 
identified using the studentized residue and the boxplot 
(Figure 4). The TS regression had an intercept of –0.222, 
a slope of 1.0455, r2 of 0.9613, and MSE of 0.00232. The 
CI95 using the WRS test for the intercept was –0.2296 
and –0.2168 (p(H0=0) < 0.001), and for the slope, it was 
1.0198 and 1.0412 (p(H0=1) < 0.001). The RR using the 
M-estimator had an intercept of –0.2033 (p(H0=0) = 0.176), 

Table 1 – Regression statistics of different regression methods for 
the synthetic datasets1

Regression Intercept P-value 
(H0=0) Slope P-value 

(H0=1) r2 MSE

Dataset without outliers
   OLS – 0.0802 0.617 1.0168 0.599 0.837 0.0023
   TS – 0.222 — 1.0455 — 0.9613 0.00232
   RR-M 0.2033 0.176 1.0415 0.166 0.8566 0.00181
   RR-MM –0.242 0.123 1.0493 0.116 0.8602 0.00168
Dataset with 1 cluster of outliers
   OLS 3.363 < 0.001 0.322 < 0.001 0.0425 0.0267
   TS 0.163 — 0.968 — 0.732 0.033
   RR-M 0.264 0.129 0.947 0.128 0.6 0.022
   RR-MM –0.194 0.218 1.04 0.206 0.845 0.0018
Dataset with 2 clusters of outliers
   OLS 6.96 < 0.001 – 0.384 < 0.001 0.026 0.0634
   TS 0.517 — 0.898 — 0.594 0.0823
   RR-M 0.706 < 0.001 0.86 < 0.001 — 0.00295
   RR-MM –0.279 0.08 1.056 0.076 0.84 0.0021
1OLS = ordinary least-squares, TS = Theil-Sen, RR-M = robust regression 
using the M-estimator, RR-MM = robust regression using the MM-estimator, 
MSE = mean square error.
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a slope of 1.0415 (p(H0=1) = 0.166), r2 of 0.8566, and MSE 
of 0.00181. The RR using the MM-estimator had an 
intercept of –0.242 (p(H0=0) = 0.123), a slope of 1.0493 
(p(H0=1) = 0.116), r2 of 0.8602, and MSE of 0.00168.

The CI95 suggested that the TS regression intercept 
and slope differed from zero and one, respectively. 
However,these statistics must be interpreted carefully 
because they depend data continuity near the expected 
CI95 thresholds. In contrast, the p values for the RR 
using the M-estimator and the MM-estimator use a 
t-test to access the two-tail probability (i.e., CI95 for RR 
are calculated). Regardless of the significance of the 
intercepts and slopes, the regression patterns were very 
similar without any clear tendency to depart from the 
expected relationship of Y = X (Figure 1). The MSE 
were nearly identical between OLS and TS (0.0023 
and 0.00232, respectively) and between the two RR 
estimators (0.00181 and 0.00168).

With one cluster of outliers – Figure 2 shows the Y 
and X values of the synthetic dataset with ten randomly 
selected data points to emulate a cluster of outliers 
below the Y = X line. As shown in Table 1, the OLS 
regression had an intercept of 3.363 (p(H0=0) < 0.001), a 
slope of 0.322 (p(H0=1) < 0.001), r2 of 0.0425, and MSE 
of 0.0267. The one cluster of outliers greatly affected 
the OLS regression estimates, showing a significant 
departure from the original intercept (0) and slope (1). 
The CD and studentized residue methods identified all 
ten synthetic outliers as potential outliers and influential 
points (shown in red triangles in Figure 2). The box plot 

in Figure 4 also depicts the same 10 points below the 
minimum value for the whiskers. The TS regression had 
an intercept of 0.163, a slope of 0.968, r2 of 0.732, and 
MSE of 0.033. The Wilcoxon CI95 for the intercept was 
0.152 and 0.167 (p(H0=0) < 0.001), and for the slope, it was 
0.866 and 0.897 (p(H0=1) < 0.001). Thus, the outliers did 
not impact the coefficients of the TS regression as they 
did the OLS regression. The RR using the M-estimator 
had an intercept of 0.264 (p(H0=0) = 0.129), a slope of 
0.947 (p(H0=1) = 0.128), r2 of 0.6, and MSE of 0.0022. The 
RR using the MM-estimator had an intercept of –0.194 
(p(H0=0) = 0.218), a slope of 1.04 (p(H0=1) = 0.206), r2 of 
0.845, and MSE of 0.0018.

Regardless of the p-values of the intercepts and 
slopes, the regression patterns between the TS and the 
two RR estimators were similar without any significant 
departure from the expected relationship of Y = X (Figure 
2). Notably, the MSE of the TS regression was slightly 
greater than the MSE of the OLS regression, whereas the 
MSE values for the two RR were considerably smaller. 
Nevertheless, the intercepts (0.163 and 0.264) and slopes 
(0.968 and 0.947) of the TS and M-estimator regressions 
were very close.

With two clusters of outliers – Figure 3 shows the Y 
and X values of the synthetic dataset in which 20 random 
data points were selected and modified to emulate two 
clusters of outliers above and below the Y = X line. 
These synthetic points were detected as outliers and 
influential points by the CD test, studentized residuals, 
and boxplot (Figure 4). As shown in Table 1, the OLS 
regression had an intercept of 6.96 (p(H0=0) < 0.001), a 

Figure 1 – Regressions using ordinary least squares (red line), 
Theil-Sen (blue line), and M-estimator (purple line) and MM-
estimator (green line) robust regression, assuming a synthetic 
dataset with slope = 1 and intercept = 0 (black, dashed line) in 
which X ~ N(5, 0.1) and the random error ~ N(0, 0.05). Open 
triangles are influential points.

Figure 2 – Regressions using ordinary least squares (red line), 
Theil-Sen (blue line), and M-estimator (purple line) and MM-
estimator (green line) robust regression, assuming the same 
dataset in Figure 1 but with 10 randomly created outlier points 
in a cluster (red symbols) and influential points (red triangles).
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0.517, a slope of 0.898, an r2 of 0.594, and an MSE of 
0.0823. The CI95 for the intercept was 0.504 and 0.521 
(p(H0=0) < 0.001), and for the slope, it was 0.624 and 
0.685 (p(H0=1) < 0.001). Interestingly Wilcoxon CI95 for 
the slope was lower than the estimated slope (0.898). 
In this case, Conover (1999) CI95 for the slope seemed 
more realistic (0.885 and 0.914) and yet did not include 
the value of 1 (p < 0.05). The RR using the M-estimator 
had an intercept of 0.706 (p(H0=0) < 0.001), a slope of 
0.86 (p(H0=1) < 0.001), r2 could not be determined, and 
MSE of 0.00295. The RR using the MM-estimator had 
an intercept of –0.279 (p(H0=0) = 0.08), a slope of 1.056 
(p(H0=1) = 0.076), r2 of 0.84, and MSE of 0.0021.

 As with the one cluster of outliers, the TS and 
M-estimator RR had similar intercepts (0.517 and 0.706) 
and slopes (0.898 and 0.86), but the estimated MSE was 
considerably greater for the TS regression, suggesting 
that calculations are not being done similarly among 
these algorithms (i.e., packages). When the one and 
two clusters of outliers are compared, the TS and the 
M-estimator RR were very similar, but they were farther 
apart from the Y = X line than with the one cluster of 
outliers. On the other hand, the MM-estimator RR was 
more resilient to the two clusters of outliers, changing 
the intercept and slope slightly.

Relationship between methods

The Pearson correlation coefficients for the intercepts and 
slopes estimated by the OLS regression, TS regression, 
and the M-estimator and the MM-estimator RR for the 
500 synthetic datasets with two clusters of outliers are 
shown in Table 2. The graphical representation of the 
scatter of the slopes is shown in Figure 5. As expected, 

Figure 3 – Regressions using ordinary least squares (red line), 
Theil-Sen (blue line), and M-estimator (purple line) and MM-
estimator (green line) robust regression, assuming the same 
dataset in Figure 1 but with 20 randomly created outlier points 
in two clusters (red points) and influential points (red triangles).

Figure 4 – Boxplots of the three synthetic datasets (Y and X values) showing the 25th (bottom line in of the box) and 75th (top line of the box) 
percentile, the median (50th percentile middle line in the box), and the average (red, star) values. Data points are jittered to minimize the 
overlapping of the data points. The data points outside the whisker limits are potential outliers and influential points.

slope of –0.384 (p(H0=1) < 0.001), an r2 of 0.026, and an 
MSE of 0.0634. As expected, the two clusters of outliers 
greatly impacted the OLS regression estimates, showing 
a significant departure from the original intercept (0) and 
slope (1), drastically increasing the MSE, and bringing 
the line farther apart from the Y = X line by assigning 
a negative slope. The TS regression had an intercept of 
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the parameter estimates of the TS regression were more 
closely related to the M- and MM-estimator RR, and 
the parameter estimates using the OLS regression were 
poorly correlated to both TS and RR (Table 2).

Real dataset analyses

Figure 6 shows the OLS and TS regressions to predict 
dietary concentrations (Mcal kg-1 of dry matter) of 
metabolizable energy (ME) from digestible energy 
(DE), using the dataset gathered by Hales et al. (2022). 
The CI95 of the intercepts and slopes of the OLS and TS 
overlap, suggesting they are not statistically different (p 
> 0.05) and no outlier is present, although influential 
points may exist (open triangles in Figure 5). The TS 
regression (ME = 0.99 × DE – 0.373) is closer to that 
derived by Galyean et al. (2016) (ME = 0.9611 × DE 
– 0.2999) than the one reported by Hales et al. (2022) 
(ME = 1.0001 × DE – 0.3926), which was determined 

Table 2 – Correlation of intercepts and slopes among methods1

Methods Methods
TS M-estimator MM-estimator

Intercepts
OLS 0.224*** 0.317*** 0.006
TS 0.931*** 0.917***
M-estimator 0.837***

Slopes
OLS 0.225*** 0.318*** 0.007
TS 0.931*** 0.917***
M-estimator 0.837***
1Levels of significance: *** p < 0.001.

Figure 5 – Comparison between slopes determined using Theil-Sen regression with ordinary least-squares regression (A), M-estimator 
robust regression (B), and MM-estimator robust regression (C), using 500 simulated synthetic datasets with two outlier clusters.

Figure 6 – Comparison of different regression methods to estimate 
dietary concentrations (Mcal kg–1 of dry matter) of metabolizable 
energy (ME) from digestible energy (DE), using the dataset 
gathered by Hales et al. (2022). Open triangles are influential 
points but not outliers. CI is the confidence interval.

by the mixed-model regression with adjustment for 
random slope and intercept effects of the study. 
Nonetheless, the CI95 for the intercepts and slopes of 
these equations overlap. Concerning other applications 
in animal science, RR has been used in a limited 
number of studies to account for the existence of 
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